Antenna Impedance Models – Old and New

Steve Stearns, K6OIK

Northrop Grumman

Electromagnetic Systems Laboratory

stearns@ieee.org

<u>k6oik@arrl.net</u>

Outline

□ Electromagnetics and antenna engineering basics

Dipole impedance by antenna theory

- Induced EMF method
- King-Harrison-Middleton iterative methods (1943-46)
- Hill's radiation pattern integration method (1967)
- MoM solution of Hallen's or Pocklington's integral equations

□ Antenna impedance models

What are they; what are they good for; why are they needed?

□ Kinds of impedance models

- General mathematical approximations
- Equivalent circuits

Previous narrowband impedance models for dipoles at resonance & antiresonance

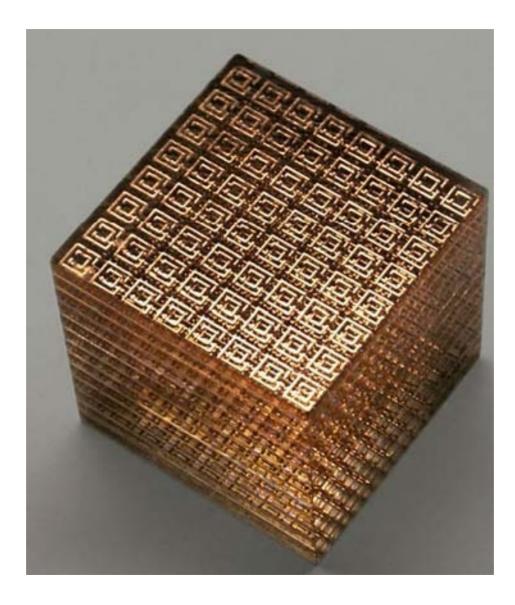
- > Series and parallel RLC equivalent circuit models
- ➢ Witt's series stub model (1995)

□ New (better) narrowband models

- Immittance functions
- > Approximating dipole impedance with immittance functions
- Converting immittance functions to equivalent circuits
- Using EDA software to compare models


□ Broadband models that span multiple resonances

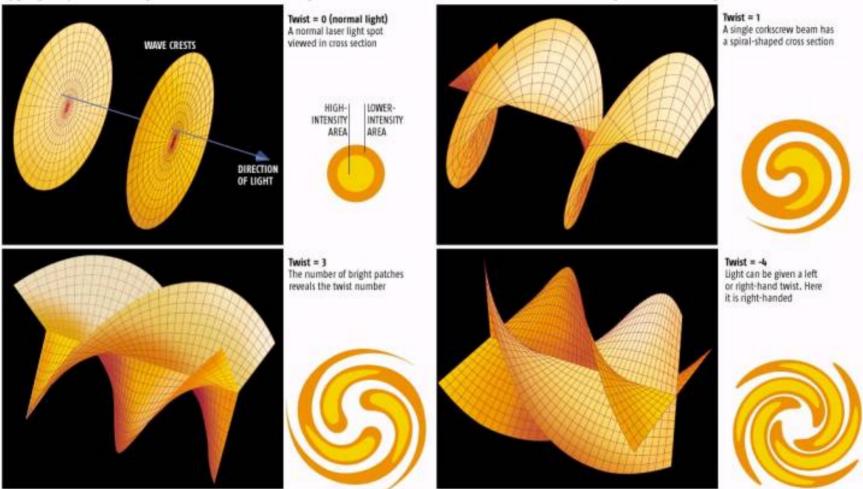
- Hamid-Hamid model (1997)
- Long-Werner-Werner model (2000)
- Streable-Pearson model (1981)


Antenna Engineering Basics

Hot Topics in Antenna Engineering Today

- □ Photonic/Electronic band-gap surfaces (PBG/EBG)
- □ Engineered "metamaterials"
- **Twisted light**

Metamaterials - The Boeing Cube

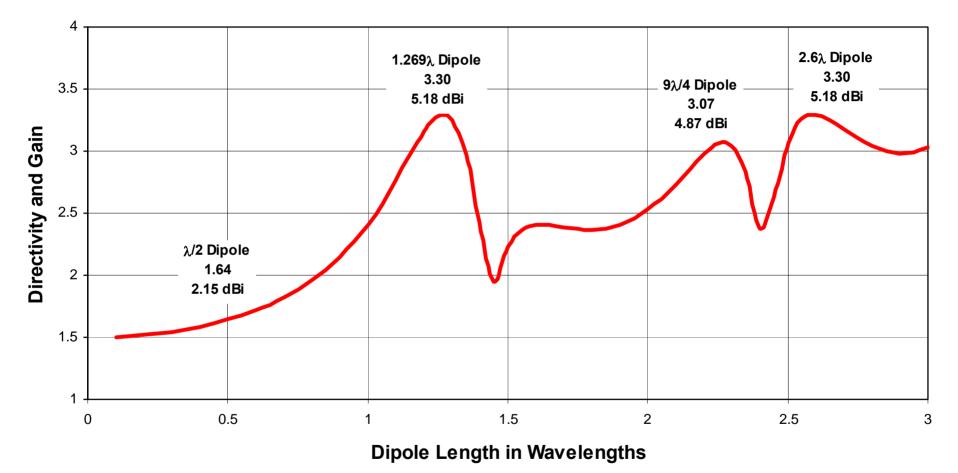


S.D. Stearns, K6OIK Page 7

Twisted Light Modes

CORKSCREW LIGHT

By giving laser photons orbital angular momentum, the wavefronts of light become twisted. To see the twist, researchers interfere the twisted light with normal laser light


□ A dipole is center fed

- □ For lossless antennas, directivity and gain are the same
- □ A dipole has maximum gain when it is a half wavelength long
- □ An antenna's radiation resistance is not unique. It depends on a reference current or location
- □ In the far-field, the electric and magnetic fields have the same waveform as the transmitted signal
- In free space, a digital data signal transmitted with a dipole and received with a loop will have low bit error rate if the SNR is high enough

- □ A dipole is resonant when its length is a half wavelength
- □ In free space, a half-wavelength dipole has a real (resistive) feedpoint impedance
- □ The feedpoint resistance of a half-wave dipole depends on its diameter
- □ The feedpoint reactance of a half-wave dipole depends on its diameter
- □ The resonant length of a dipole depends on its diameter
- Dipoles are resonant at lengths slightly shorter than an odd number of half-wavelengths
- □ Dipoles are anti-resonant at lengths slightly longer or shorter (which?) than an even number of half-wavelengths
- □ As frequency increases, a dipole's impedance converges to a finite value or diverges to infinity (which?)
- □ If a linear wire antenna is resonant, then its feedpoint impedance is real everywhere along its length

S.D. Stearns, K6OIK Page 10

Dipole Directivity and Gain versus Length

S.D. Stearns, K6OIK Page 11

Getting the current distribution

- Induced EMF method
- Hallen's integral equation (1938)
- Pocklington's integral equation (1897)

Mathematical solution

- Iterative and variational methods
 - Approximation as ratio of infinite series
 - King-Harrison (*Proc IRE*, 1943); Middleton-King (*J Appl Phys*, 1946)
- Hill's radiation pattern integration method (Proc IEE, 1967)
- > Harrington's method of moments (*Proc. IEEE*, 1967)

Numerical solution

- > Many software programs are available for electromagnetic analysis
- Finite difference method (FD)
- Finite element method (FEM)
- Method of moments (MoM)
- Geometric theory of diffraction (GTD)

Design Software for Antennas and Matching Networks

□ Software for antennas and fields

- > NEC (NEC-2 is public domain, NEC-4 is restricted)
- WIRA (Dr. Frank Harris's program used at Technology for Communications International)
- > WIPL-D (MoM for wires, plates, and dielectrics; free Lite version)
- Ansoft HFSS (finite element method, professional, expensive)
- Zeland IE3D (MoM) and Fidelity (finite difference method)
- CST Microwave Studio (MWS) (free 30-day trial)
- > Many others ...

Electronic Design Automation (EDA) software for rf circuits and networks

- > SPICE and its variants... (Orcad pSPICE, free Lite version)
- ARRL Radio Designer (10 variable optimizer, discontinued)
- Ansoft's Serenade SV (4 variable optimizer, discontinued)
- Ansoft's Designer SV (no optimizer, free)
- Agilent's Advanced Design System (ADS)

Applied Wave Research's Microwave Office (MWO) (free 30-day trial) S.D. Stearns, K6OIK Page 13
ARRL Pacificon 2004 October 15, 2004

- □ Assumes sinusoidal current distribution
- □ Method gives pattern, radiation resistance, and reactance
- Accurate for pattern and impedance of dipoles up to halfwavelength and verticals up to quarter-wavelength
- □ Inaccurate for impedance of dipoles longer than halfwavelength and verticals longer than quarter wavelength
- □ Used widely for the design of AM broadcast vertical towers

□ Radiation resistance

$$R_{in} = \frac{\eta}{2\pi \sin^2\left(\frac{kl}{2}\right)} \left\{ C + \ln(kl) - \operatorname{Ci}(kl) + \frac{1}{2}\sin(kl)\left[\operatorname{Si}(2kl) - 2\operatorname{Si}(kl)\right] \right\}$$

Terms vanish when l/λ
is a half integer
$$+ \frac{1}{2}\cos(kl)\left[C + \ln\left(\frac{kl}{2}\right) + \operatorname{Ci}(2kl) - 2\operatorname{Ci}(kl)\right] \right\}$$

Wire radius term
$$X_{in} = \frac{\eta}{2\pi \sin^2\left(\frac{kl}{2}\right)} \left\{\operatorname{Si}(kl) + \frac{1}{2}\sin(kl)\left[\operatorname{Ci}(2kl) - 2\operatorname{Ci}(kl) + \operatorname{Ci}\left(\frac{2ka^2}{l}\right)\right] + \frac{1}{2}\cos(kl)\left[\operatorname{Si}(2kl) - 2\operatorname{Si}(kl)\right] \right\}$$

S.D. Stearns, K6OIK Page 15

- □ Is a general method for solving integro-differential equations by converting them into matrix equations
- □ Introduced to electromagnetics by Roger Harrington in 1967
- Gives better results with Hallen's integral than Pocklington's
- □ Basis functions can be global or local
- □ Local basis functions break antenna into small conducting segments or patches
 - Expresses current as weighted sum of basis functions
 - Solves for the coefficients of the basis functions on all segments
 - Calculates radiation pattern and feedpoint impedance from currents

□ Software for antennas made of round wires, no dielectrics

- Numerical Electromagnetic Code (NEC), EZNEC, EZNEC ARRL, and NEC WinPlus
- > WIRA (proprietary to Technology for Communications International)

□ For antennas of round wires, flat plates, and dielectric slabs

➢ WIPL-D and WIPL-D Lite

Limitations of Antenna Modeling by MoM (NEC)

NEC is "blind" to current modes – computes total current, not resolved into common and differential current modes

Current modes are "noumena;" total current is "phenomena"

\Box Antennas that rely on interacting modes do not scale if λ/λ_g or v_p changes

Dielectric insulation on wires affects common and differential current modes differently ⇒ published antenna designs often irreproducible

□ Antennas of dielectric covered wire can't be analyzed by NEC

- Twin lead folded dipole
- Twin lead J-pole
- Butternut radials

Amateur literature

- "Plastic-insulated wire lowers the resonant frequency of halfwave dipoles by about 3%." (ARRL Antenna Book, p. 4-31)
- ➢ "Plastic-insulated wire increases the antiresonant frequency of 1 *λ* dipoles by about 5%." (K6OIK, ARRL Pacificon 2003)

□ Freespace

➢ 20 (exact)

🗆 Omega

$$\Omega' = 2\ln\left(\frac{l}{a}\right) = 2\ln\left(\frac{2l}{d}\right)$$

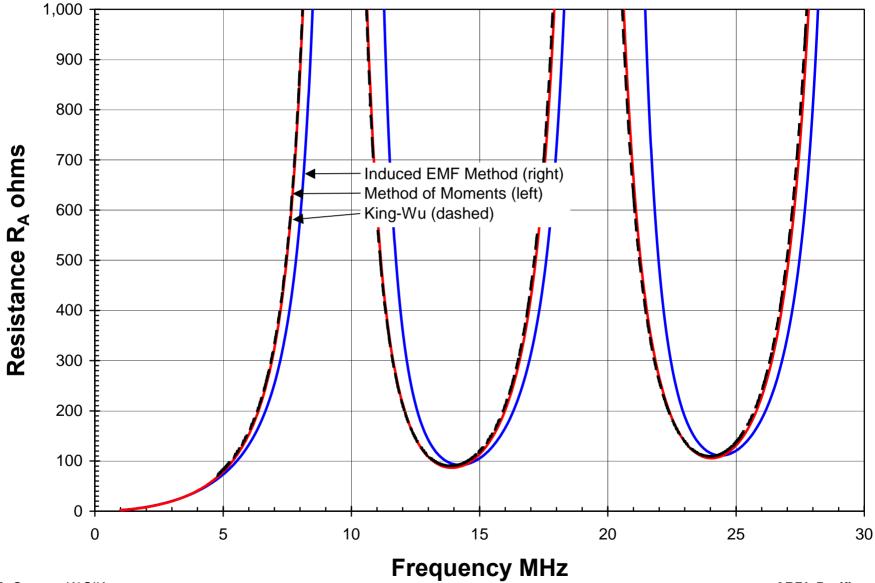
l is total length *d* is wire diameter *a* is wire radius

□ Length: Half wavelength at 5 MHz

- > 29.9792458 meters
- > 98.3571056 feet

Length-to-diameter ratio

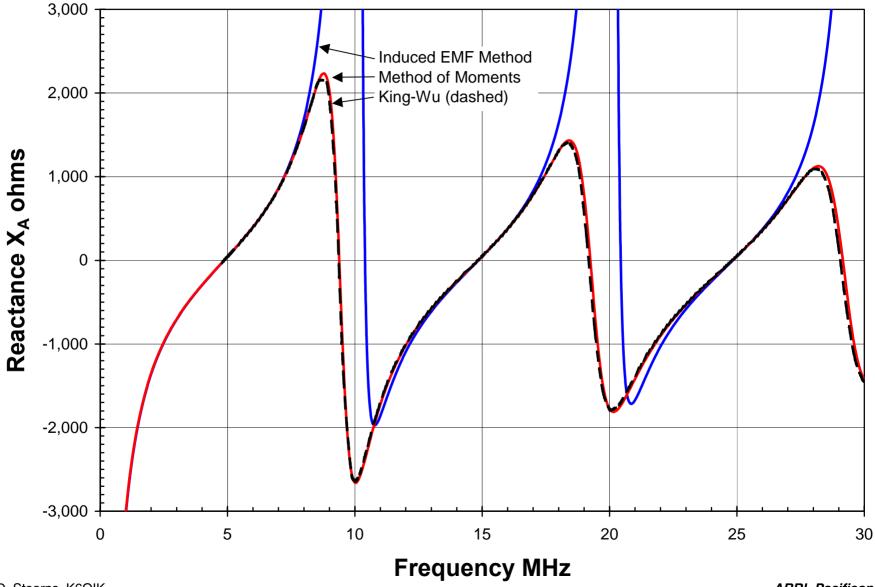
> 11,013


Diameter

- > 0.107170 inches
- > AWG # 9.56

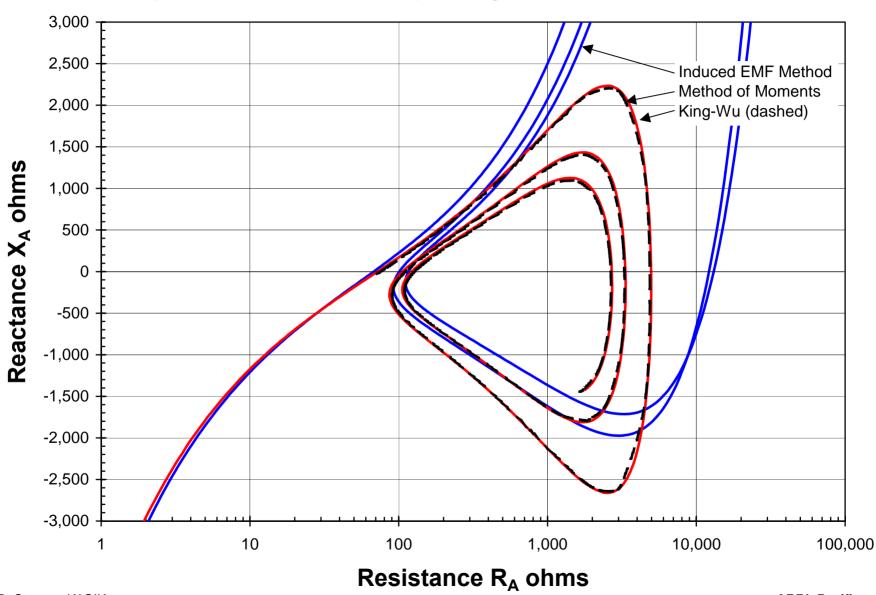
Resonances	Antiresonances
4.868 MHz	9.389 MHz
72.2 Ω	4,970 Ω
14.834 MHz	19.245 MHz
106 Ω	3,338 Ω
24.820 MHz	29.158 MHz
122 Ω	2,702 Ω

Feedpoint Resistance


Induced EMF Method versus MoM

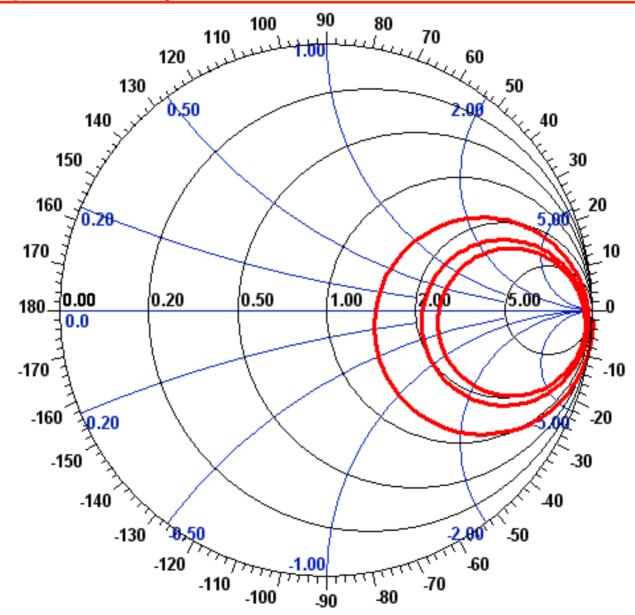
S.D. Stearns, K6OIK Page 19

Feedpoint Reactance


Induced EMF Method versus MoM

S.D. Stearns, K6OIK Page 20

ARRL Pacificon 2004 October 15, 2004


Comparison of Induced EMF versus MoM up to 3λ

Compare to ARRL Antenna Book, p. 2-4, Figure 3.

S.D. Stearns, K6OIK Page 21

Dipole Impedance by MoM on the Smith Chart

 \Box For exact half-wave dipole, $l = \lambda/2$

 $Z_A = 73.08 + j41.52$

Independent of wire diameter

 \Box For resonant dipole, $l < \lambda/2$

$$Z_A = R_A + j0$$
$$R_A < 73.08$$

Depends on wire diameter

Dipole thickness

$$\frac{l}{d} = \frac{l}{2a}$$
$$\Omega' = 2\ln\left(\frac{l}{a}\right)$$

l is total length *d* is wire diameter *a* is wire radius

S.D. Stearns, K6OIK Page 23

□ Books for antenna engineers and students

- Antenna Engineering Handbook, 3rd ed., R. C. Johnson editor, McGraw-Hill, 1993, ISBN 007032381X. First edition published in 1961, Henry Jasik editor.
- C. A. Balanis, Antenna Theory, 2nd ed., Wiley, 1996, ISBN 0471592684. First edition published in 1982 by Harper & Row.
- J. D. Kraus & R. J. Marhefka, Antennas, 3rd ed., McGraw-Hill, 2001, ISBN 0072321032. First edition published in 1950; 2nd edition 1988. The 3rd edition added antennas for modern wireless applications.
- R. S. Elliott, Antenna Theory and Design, revised ed., IEEE Press, 2003, ISBN 0471449962. First published in 1981 by Prentice Hall.
- S. J. Orfanidis, *Electromagnetic Waves and Antennas*, draft textbook online at <u>http://www.ece.rutgers.edu/~orfanidi/ewa/</u>

□ Books for radio amateurs

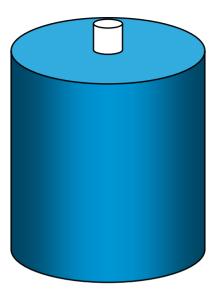
ARRL Antenna Book, 20th ed., Dean Straw editor, American Radio Relay League, 2003, ISBN 0872599043.

Narrowband Models of Dipole Impedance

Near the 1st Resonance

□ Albert Einstein (1916)

- Blind observer can only measure force
- ➤ Gravity or acceleration?
- Equivalence principle & General theory of relativity


□ Alan Turing (1950)

- Blind observer can only send and receive text messages to unknown entity
- > Man, woman or machine?
- Turing test for Artificial Intelligence

□ Steve Stearns, K6OIK (2004)

- Blind observer can only measure impedance at any frequency
- Antenna or circuit?
- > ???

Introducing the Smart Dummy

S.D. Stearns, K6OIK Page 27

What Are Equivalent Circuits for Antenna Impedance Good For?

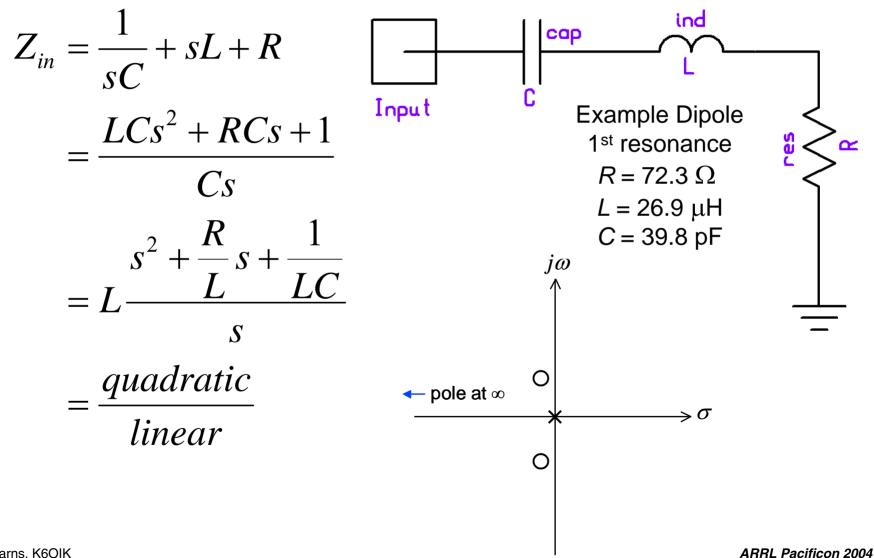
□ Build dummy loads that act like real antennas

Perform realistic tuning and loading tests without radiating

□ Facilitate matching network design in winSMITH

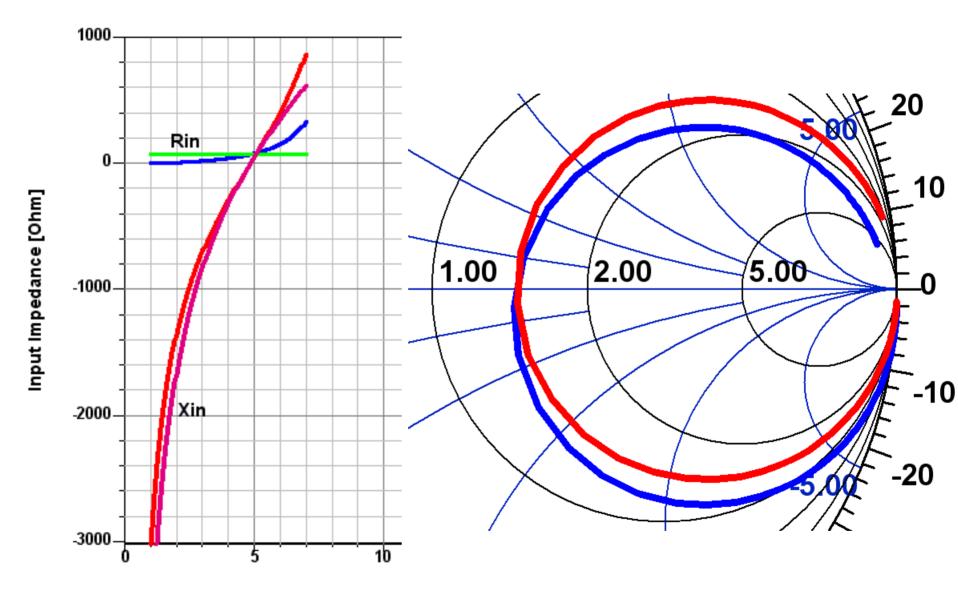
Overcome the 15 point limit on load impedance files

□ Build and test wideband impedance matching networks

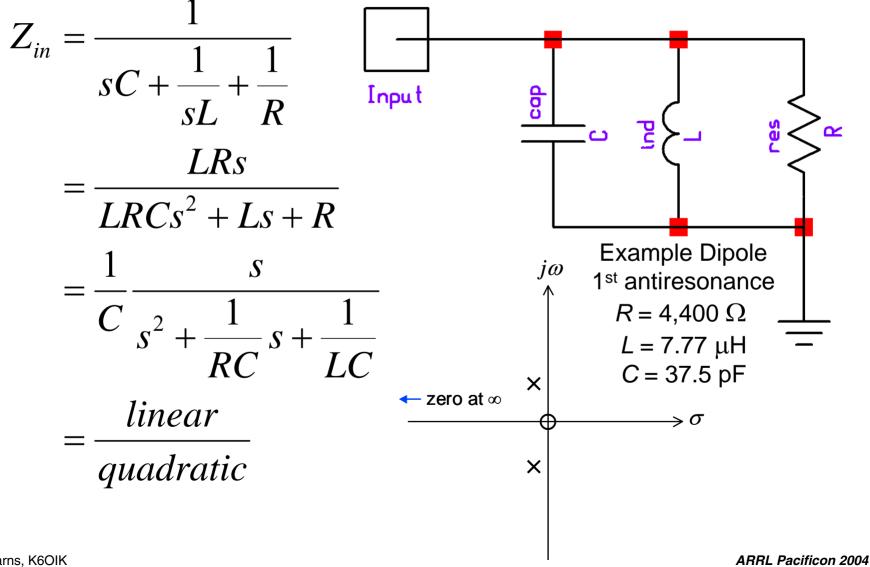

- Put the "proxy" antenna on the lab bench
- Adjust the matching network on the bench, instead of on the tower

□ Calculate the Fano bound (1947)

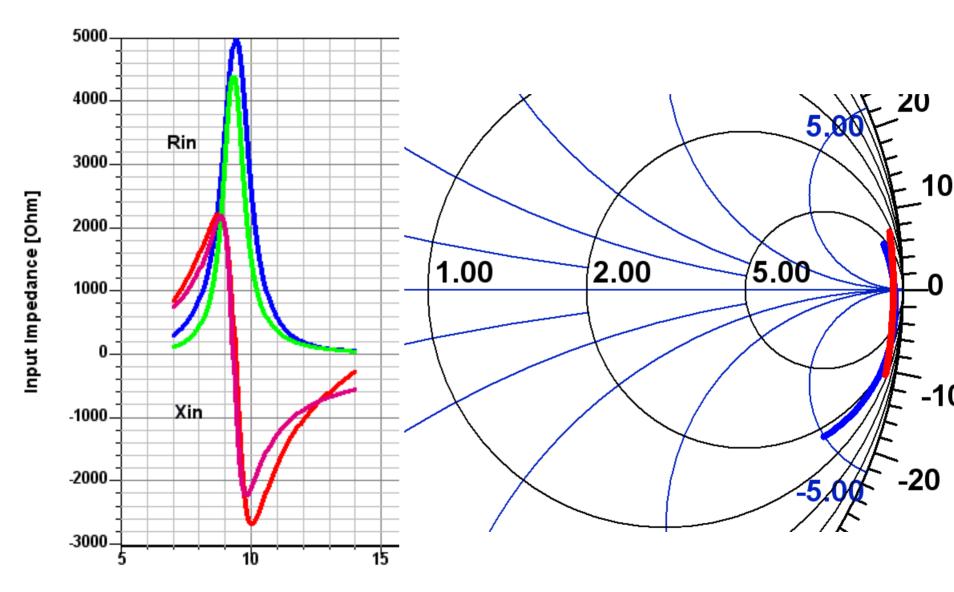
- How much potential VSWR bandwidth is left on the table?
- What can more network complexity buy?



Series RLC Equivalent Circuit for Dipoles at Resonance

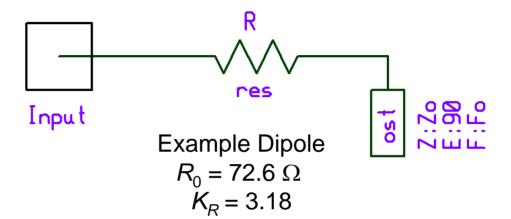

S.D. Stearns, K6OIK Page 29

Accuracy of Series RLC Model

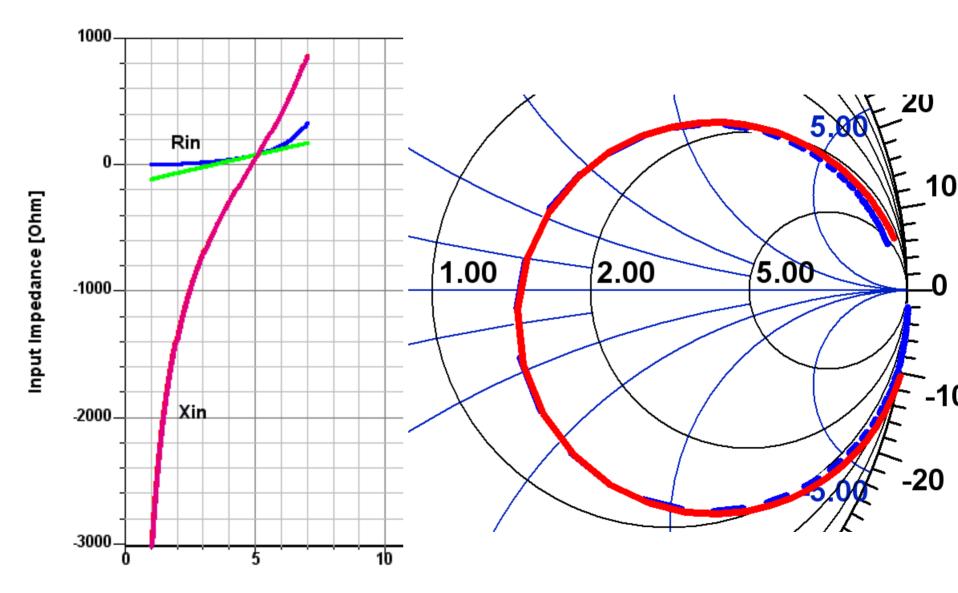

S.D. Stearns, K6OIK Page 30

Parallel RLC Equivalent Circuit for Dipoles at Antiresonance

S.D. Stearns, K6OIK Page 31


Accuracy of Parallel RLC Model

S.D. Stearns, K6OIK Page 32


Witt's Open Circuited Quarter-Wave Stub Model for Dipoles at Resonance

$$Z_{in} = R(f) + jX(f)$$

$$R(f) = R_0 \left[1 + K_R \left(\frac{f}{f_0} - 1 \right) \right] \quad \text{where } 3 \le K_R \le 3.5$$
$$X(f) = -Z_0 \cot \frac{\pi f}{2f_0} \quad \text{where } Z_0 = \frac{\eta}{\pi} \left[\ln \left(\frac{8110}{df_0} \right) - 1 \right]$$

Accuracy of Witt's Open Stub Model

S.D. Stearns, K6OIK Page 34

Better Lumped-Element Equivalent Circuits for Dipoles

From DC to Beyond the 1st Resonance

S.D. Stearns, K6OIK Page 35

Find simple lumped-element equivalent circuits that approximate the impedance of a resonant dipole better than existing models, by using network synthesis

□ Step 1: Obtain reference impedance data for 5 MHz half-wave dipole from 1 MHz to 30 MHz

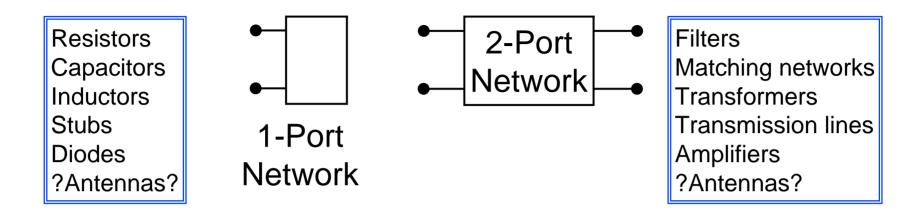
Run broadband EZNEC sweep, and write to a MicroSmith .gam file

□ Step 2: Fit the rational function to the dipole's impedance

Order must be at least quadratic

linear

- Program a general rational function by using Ansoft Serenade SV's "RJX" element or ARRL Radio Designer's "SRL" element
- Use optimizer for S matrix goal from 1 MHz to 7 MHz
- Factor to ensure no poles or zeros in right half plane (RHP)
- Test to ensure positive real (p.r.)


□ Step 4: Synthesize equivalent circuit from rational function

- Extract lumped-element circuit topology in Darlington form
- Continued fraction expansion gives ladder network
- Partial fraction expansion gives series/parallel network

□ Step 5: Check the result

- > Program the circuit into Ansoft Serenade SV or ARRL Radio Designer
- Compare against original dipole
- Compare against other approximations

The Subject of Ports is an Important Subject

□ N-port networks:

- Terminals are paired
- Port voltages defined across terminal pairs
- Port currents defined as differential current into/out of terminal pairs

Laws of physics determine properties and relations among, port impedances

- Conservation of energy
- Causality

Immittance (Impedance & Admittance) Functions

- □ Analytic in the RHP, and no poles or zeros
- \Box Poles and zeros allowed only on j ω axis and in LHP
- □ Input immittances of passive reciprocal networks and devices
- □ Real and imaginary parts are related by Poisson integral
- □ Every immittance function has a Darlington equivalent circuit,
- □ Port immittances of lumped R, L, C networks
 - Are rational functions with positive coefficients
 - Degrees of numerator and denominator polynomials differ by 0 or 1
 - > If the degrees are the same, the network has losses

- Any one-port immittance function can be realized by a lossless two-port terminated by a resistor
- □ A resistor in series or shunt with a lossless one-port lacks generality antennas don't act like this

- Every antenna impedance function has an equivalent circuit in Darlington form
- □ The Darlington form is the starting point for understanding the Fano bound on impedance matching

Finding a Rational Approximating Function

□ Initial form

$$Z_A(s) = \frac{cubic}{quadratic}$$
$$= \frac{as^3 + bs^2 + cs + d}{es^2 + s}$$

$$R_A(j\omega) = \frac{(be-a)\omega^2 + (c-de)}{e^2\omega^2 + 1}$$

□ Imaginary part

$$X_{A}(j\omega) = \frac{ae\omega^{4} + (b - ce)\omega^{2} - d}{e^{2}\omega^{3} + \omega}$$

S.D. Stearns, K6OIK Page 41

ARRL Radio Designer Optimization Code

Page 42

```
* This file was generated initially by Serenade Schematic Netlister
                 * Edited manually for ARRL Radio Designer by K6OIK
                  A: 74.3954E-24
                  B: 27.5199E-6
                  D: 25.3813E9
                  E: 4.66048E-9
                  C:72.2976
                  w :(2*pi*f)
                  r :(((b*e-a)*w^2+(c-d*e))/((e*w)^2+1))
                  x :((a*e*w^4+(b-c*e)*w^2-d)/(w*((e*w)^2+1)))
                 BLK
                  srl 122 R=r L=(x/w)
                 dipole5: 1POR 122
                 FND
                 FREQ
                  Step 1MHz 7MHz 50kHz
                 END
                 NOUT
                  R1 = 50
                 END
                 OPT
                 dipole5 R1 = 50
                  F 1MHz 7MHz S=antdata
                 END
                 NOPT
                  R1 = 50
                 END
                 DATA
                 antdata: Z RI INTP=CUB
                 *Impedance of 5-MHz dipole by EZNEC. Length=98.35710566 ft., Dia=0.1071697366 in.,
                 Omega=20
                 1.00MHz 1.89876587 -3035.57432668
S.D. Stearns, K6OIK ... [impedance data file continued...]
                 END
```

Coefficients Found By ARD's Optimizer in Four Tries

 $\Box \text{ First attempt with no constraints; negative coefficient } \textcircled{S}$ $Z_A(s) = \frac{-7.74 \times 10^{-14} s^3 + 2.70 \times 10^{-5} s^2 + 1.83 \times 10^{-5} s + 2.50 \times 10^{10}}{1.83 \times 10^{-9} s^2 + s}$

 $\Box \text{ Second attempt, forced coefficients > 0; but R_A < 0 at low f}$ $Z_A(s) = \frac{7.44 \times 10^{-23} s^3 + 2.75 \times 10^{-5} s^2 + 72.3s + 2.54 \times 10^{10}}{4.66 \times 10^{-9} s^2 + s}$

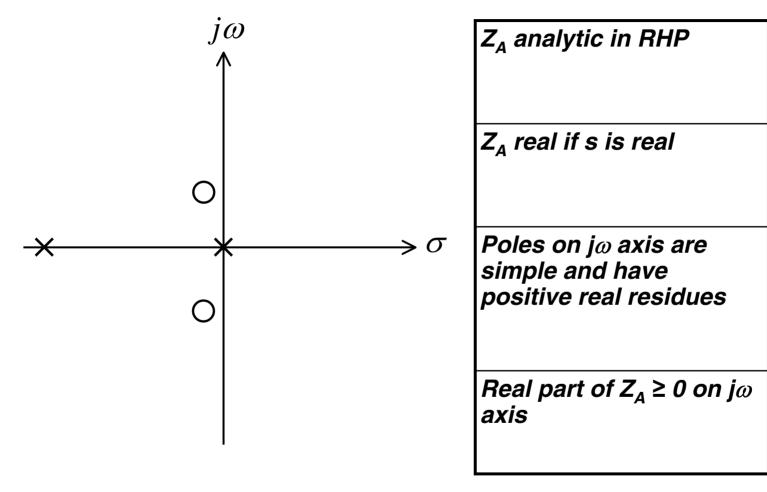
□ Third attempt, constrained c = de, so $R_A(j\omega) \ge 0$ for all ω \bigcirc

 $Z_A(s) = \frac{5.36 \times 10^{-23} s^3 + 2.72 \times 10^{-5} s^2 + 72.3s + 2.52 \times 10^{10}}{2.88 \times 10^{-9} s^2 + s}$

□ Fourth attempt, eliminated negligible cubic term 🙂

$$Z_A(s) = \frac{2.72 \times 10^{-5} s^2 + 72.3s + 2.52 \times 10^{10}}{2.88 \times 10^{-9} s^2 + s}$$

S.D. Stearns, K6OIK Page 43


Finding a Rational Approximating Function Final Solution with Proper Constraints

□ Final form

$$Z_A(s) = \frac{quadratic}{quadratic}$$

= $\frac{bs^2 + des + d}{es^2 + s}$
= $\frac{2.72 \times 10^{-5}s^2 + 72.3s + 2.52 \times 10^{10}}{2.88 \times 10^{-9}s^2 + s}$
= $9,445 \frac{(s + (0.13 \pm j3.04) \times 10^7)}{s(s + 3.48 \times 10^8)}$

S.D. Stearns, K6OIK Page 44

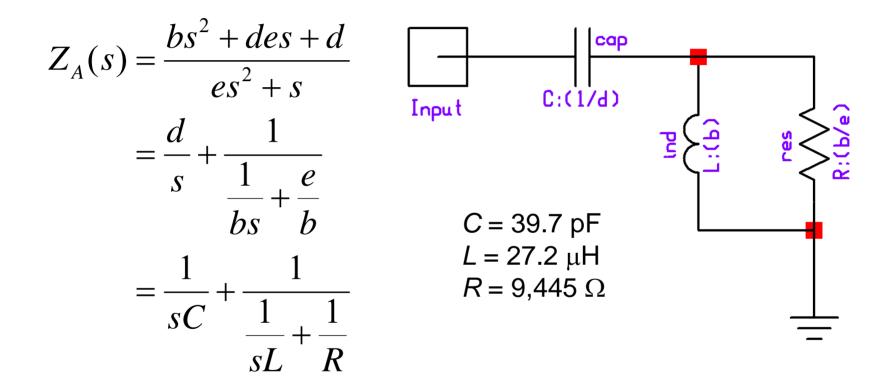
Confirm that Approximation is Positive Real

 \mathbf{N}

pass

 \mathbf{V}

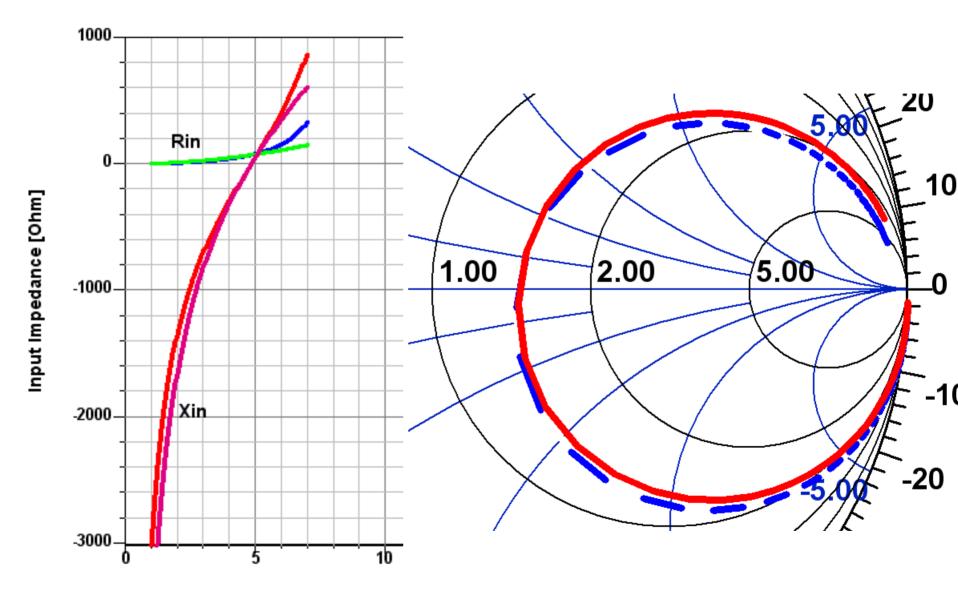
pass

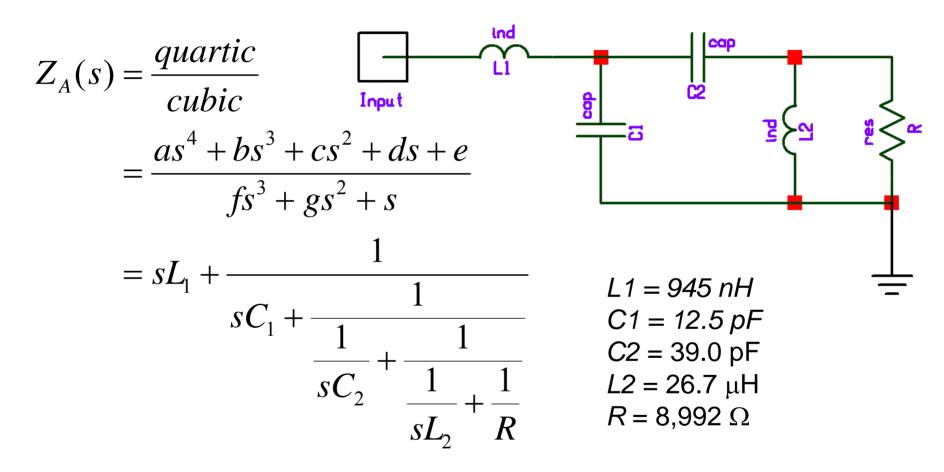

 \mathbf{N}

pass

 \mathbf{N}

pass


Divide, and voila !


A three-element equivalent circuit in Darlington form !

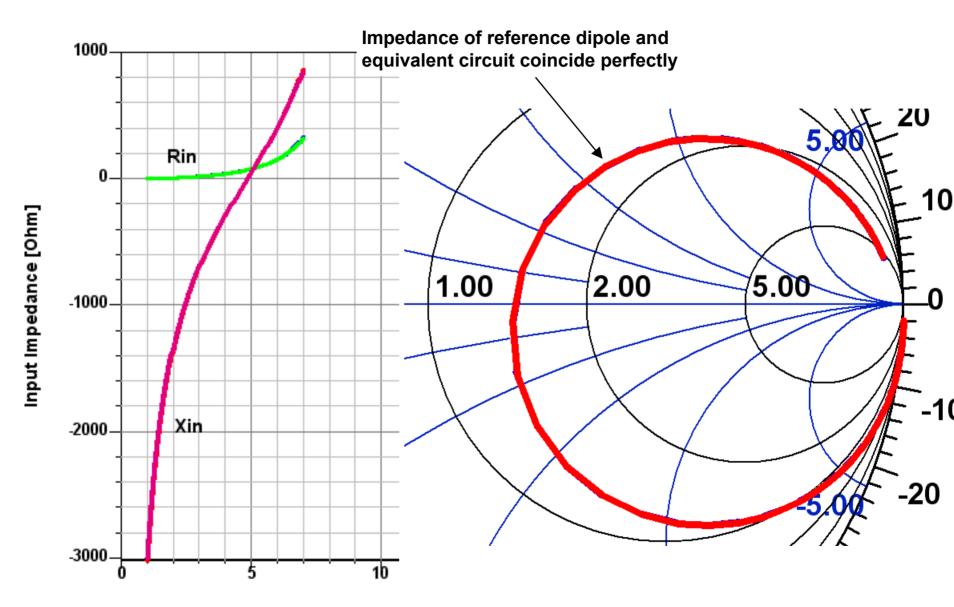
S.D. Stearns, K6OIK Page 46

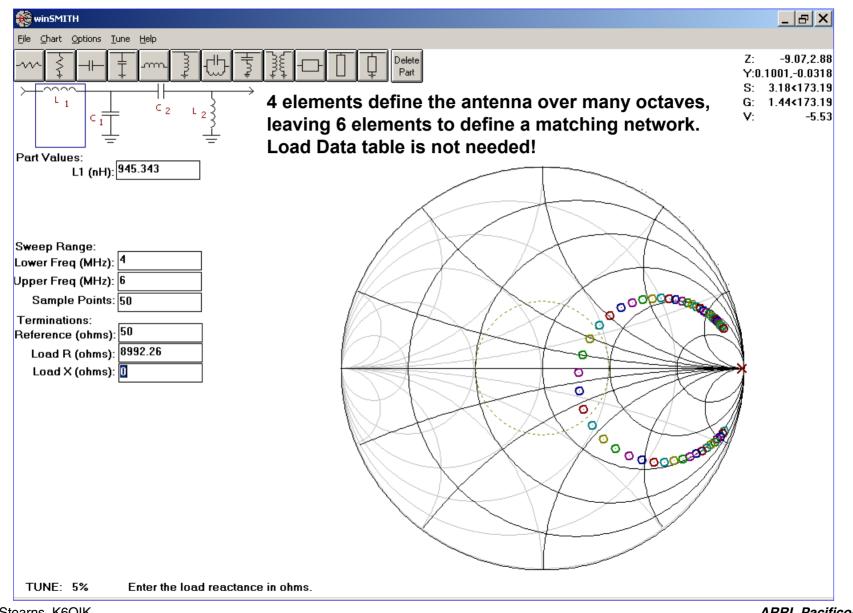
Accuracy of 3-Element Equivalent Circuit


S.D. Stearns, K6OIK Page 47

□ A five-element equivalent circuit in Darlington form !

□ 1 pole at the origin, 1 pole at infinity, 1 pair conjugate poles, 2 pairs of conjugate zeros

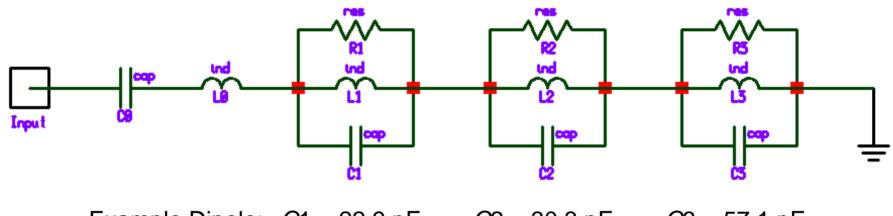

S.D. Stearns, K6OIK Page 48



Z _A analytic in RHP	√ pass
Z _A real if s is real	√ pass
Poles on j <i>ω</i> axis are simple and have positive real residues	√ pass
Real part of Z _A ≥ 0 on j <i>ω</i> axis	√ pass

Accuracy of 5-Element Equivalent Circuit

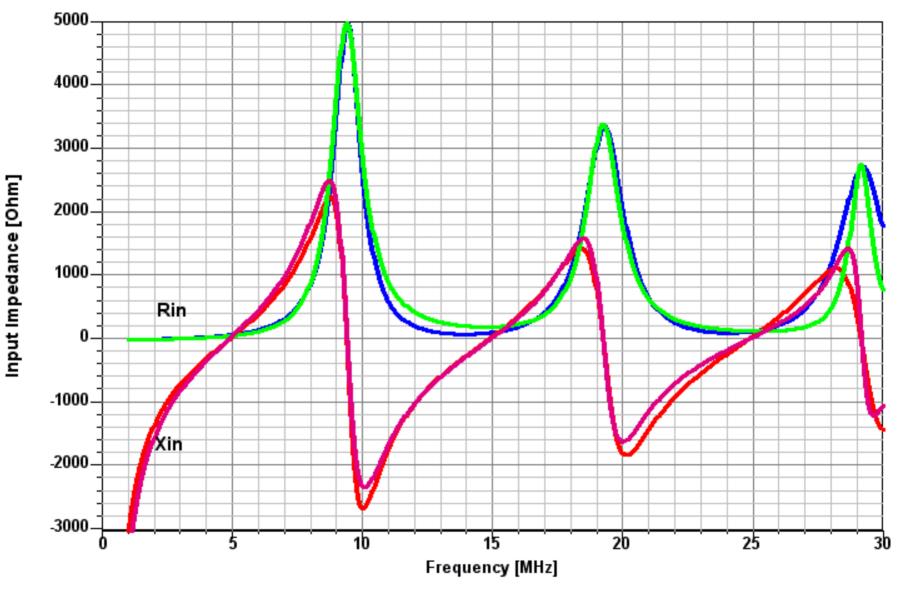
S.D. Stearns, K6OIK Page 51


Matching Network Design in winSMITH 5 MHz to 5.5 MHz, VSWR < 1.48

Broadband Models of Dipole Impedance

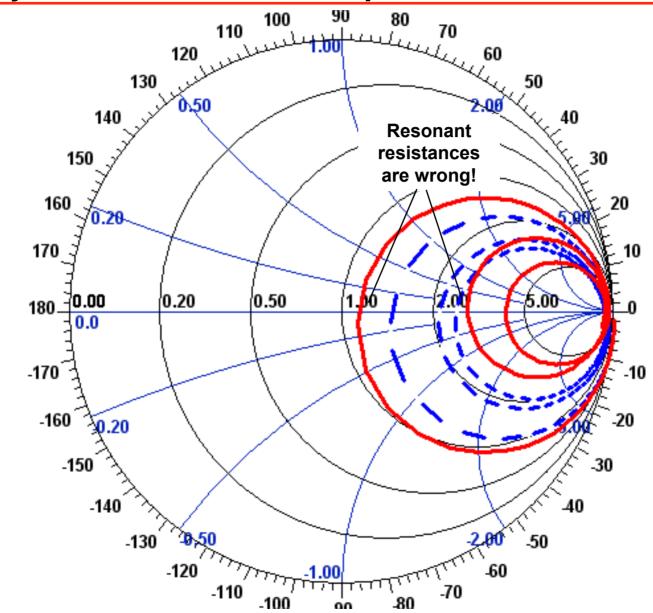
Spanning Multiple Resonances and Antiresonances

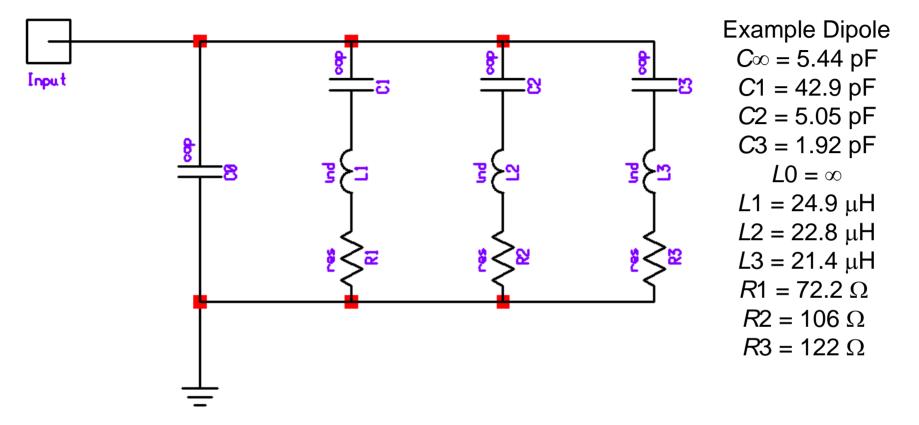
Hamid & Hamid's Broadband Equivalent Circuit (1997)


Example Dipole:	C1 = 22.9 pF	C2 = 30.3 pF	C3 = 57.1 p⊦
<i>C</i> 0 = 43.9 pF	<i>L</i> 1 = 12.5 μH	<i>L</i> 2 = 2.26 μH	<i>L</i> 3 = 522 nH
$L\infty$ = 4.49 μ H	$R1 = 4,970 \ \Omega$	$R2 = 3,338 \ \Omega$	$R3 = 2,702 \ \Omega$

□ Foster's 1st canonical form with small losses added

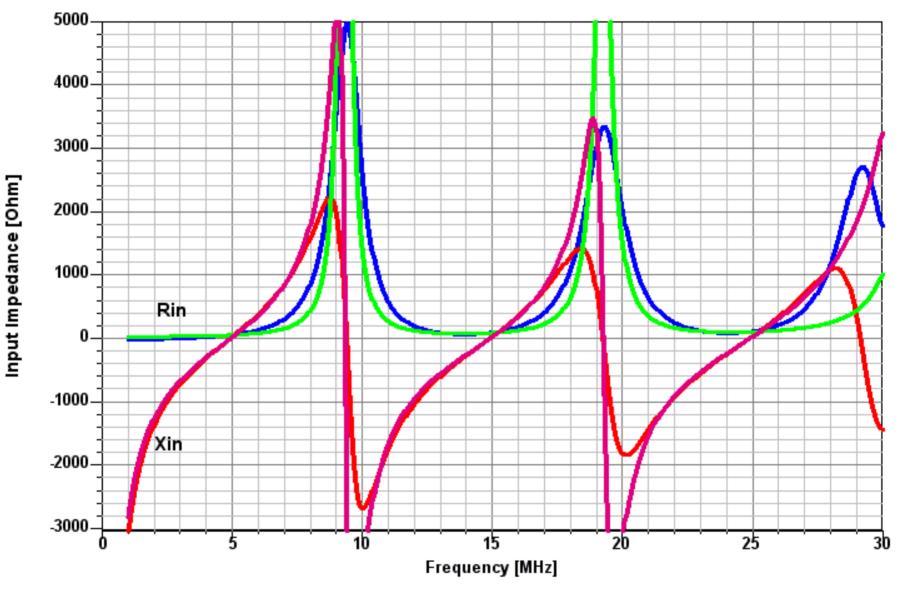
□ Fits dipole impedance best near antiresonances


□ Reference: Ramo, Whinnery, and Van Duzer, Fields and Waves in Communication Electronics, Wiley, 1965, Section 11.13

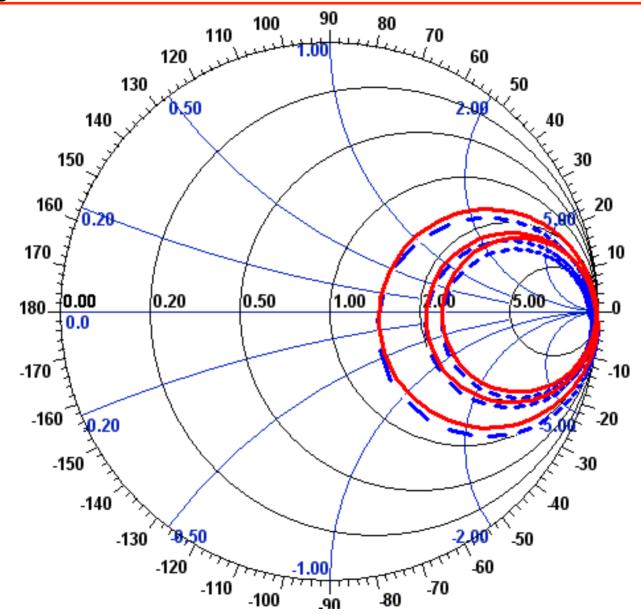

Accuracy of Hamid & Hamid's Equivalent Circuit

S.D. Stearns, K6OIK Page 55

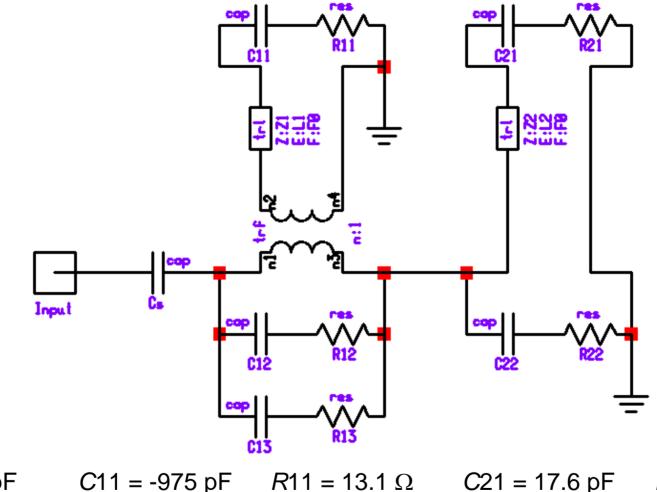
Accuracy of Hamid & Hamid's Equivalent Circuit



□ Fits dipole impedance best near resonances


□ Reference: Ramo, Whinnery, and Van Duzer, Fields and Waves in Communication Electronics, Wiley, 1965, Section 11.13

Accuracy of Foster's 2nd Form With Small Losses



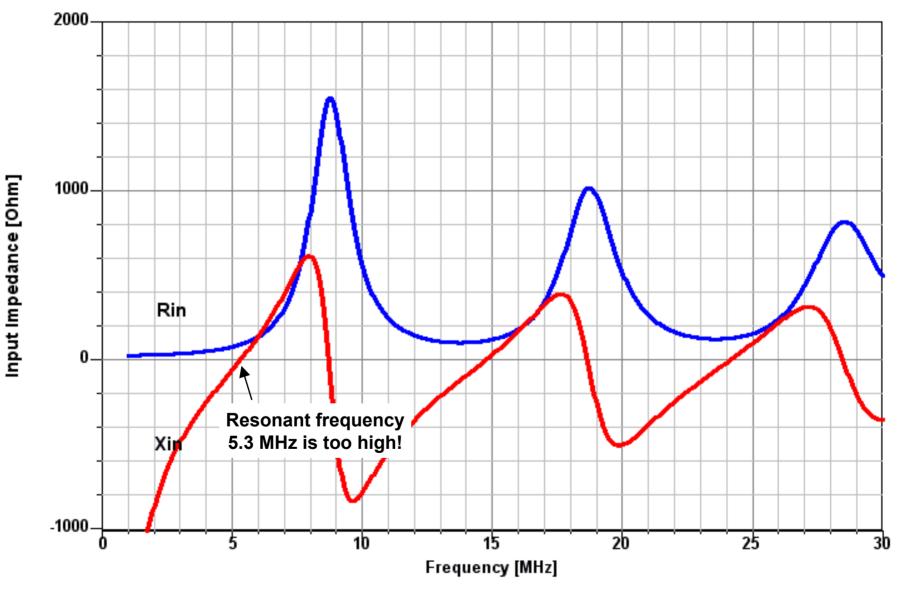
S.D. Stearns, K6OIK Page 58

Accuracy of Foster's 2nd Form With Small Losses

Long, Werner, & Werner's Broadband Model (2000) Frequency Scaled to $f_0 = 5 \text{ MHz}, \Omega' = 7.8$

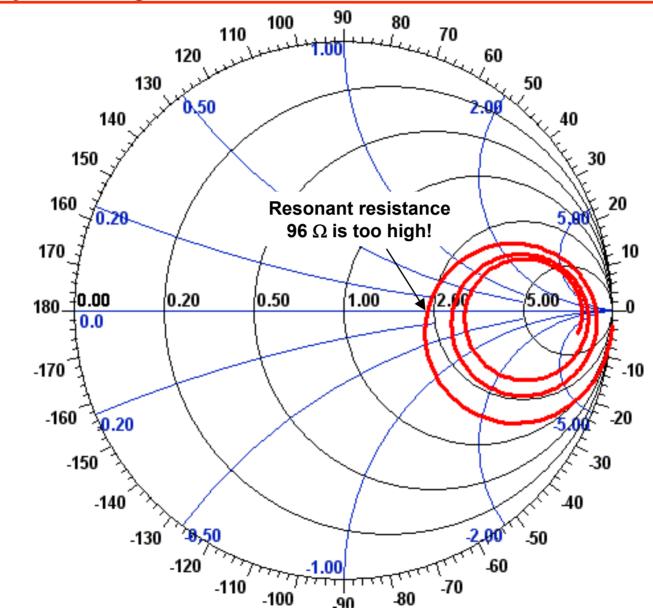
 $R21 = 700 \Omega$ $E2 = 46.9 \deg$ $R22 = 295 \Omega$

 $Z_2 = 195 \Omega$

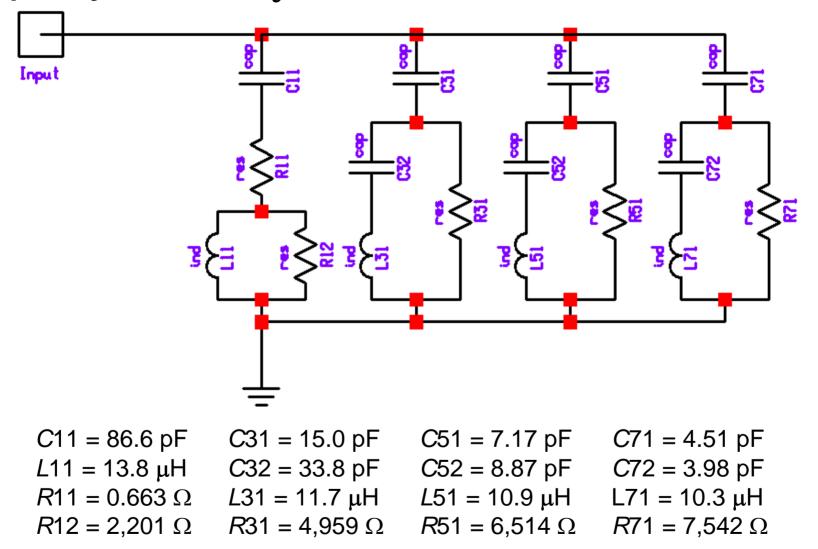

C22 = -3.00 pF

 $Cs = 150 \, pF$

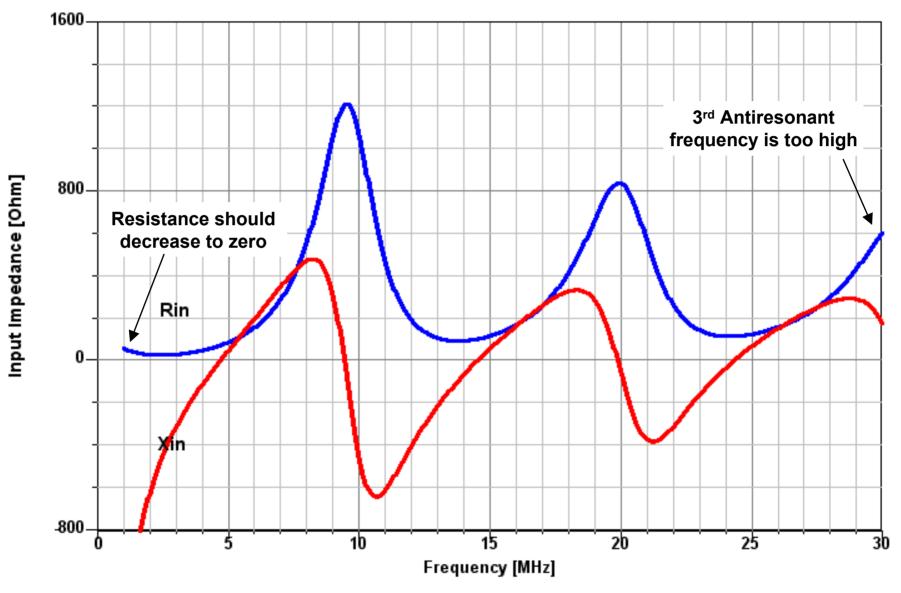
C11 = -975 pF $R11 = 13.1 \Omega$ $Z1 = 215 \Omega$ E1 = 44.9 degC12 = 24.0 pF $R12 = 3,600 \Omega$ C13 = 8.33 pF $R13 = 500 \Omega$


S.D. Stearns, K6OIK Page 60

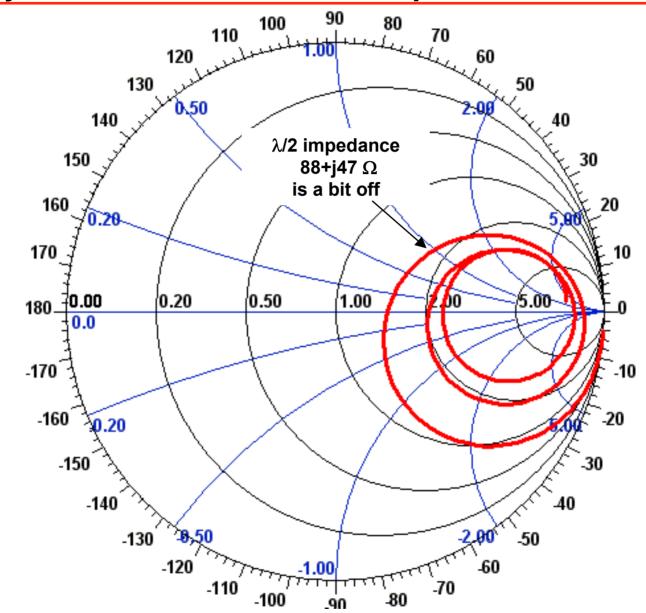
Accuracy of Long, Werner, & Werner's Model



S.D. Stearns, K6OIK Page 61


Accuracy of Long, Werner, & Werner's Model

Streable & Pearson's Broadband Equivalent Circuit (1981) Frequency Scaled to $f_0 = 5$ MHz, $\Omega' = 10.6$



Accuracy of Streable & Pearson's Equivalent Circuit

S.D. Stearns, K6OIK Page 64

Accuracy of Streable & Pearson's Equivalent Circuit

Comparison of Antenna Impedance Models

Antenna Impedance Model	Approximation Accuracy	Realizable Equivalent Circuit	Darlington Form	Element Types	Maximum Frequency Range
Series R L C	fair	yes	yes	R, L, C	0.94 f _o to 1.05 f _o
Witt model	good	no	yes	variable resistor, TL stub	0.6 f _o to 1.2 f _o
K6OIK 3-Element	good	yes	yes	R, L, C	0.90 f _o to 1.08 f _o
K6OIK 5-Element	excellent	yes	yes	R, L, C	DC to 1.4 f_0
Hamid-Hamid	poor	yes	no	R, L, C	no limit
Fosters 2 nd Form with small losses	fair, best near resonances	yes	no	R, L, C	no limit
Long-Werner- Werner	fair	no	no	R, C, TL	5 octaves
Streable-Pearson	excellent	yes	no	R, L, C	no limit

Ansoft Serenade SV vs ARRL Radio Designer Lessons Learned

□ ARD runs on the netlists generated in Serenade SV with simple modifications to observe ARD restrictions

ARD restricts names and labels to 8 characters (no spaces)

□ Serenade SV's optimizer runs faster than ARD's

□ ARD's optimizer gives better answers than Serenade SV

ARD 6 digits; Serenade SV 5 digits

□ ARD accepts goals on S, Y, or Z matrices, but only one; Serenade SV accepts compound goals

Serenade SV accepts data in files or data blocks; ARD uses only data blocks

□ Serenade SV creates the 1st line of a data block of the form Antdata: IMP INTP = CUB

ARD accepts the 1st line of a data block of the form

Antdata: Z RI INTP = CUB (but apparently ignores INTP = CUB)

- Classical series and parallel RLC approximations of dipoles at resonance and antiresonance are good over very limited bandwidth
- □ Approximations of an immittance function can be realizable or not
- Realizable approximations can be converted to equivalent circuits
- □ Two new narrowband approximations for dipole impedance near resonance have been obtained by network synthesis
 - Lumped-element RLC networks having 3 and 5 elements
 - > The 5-element network is an extremely accurate fit to the dipole
 - Darlington form single resistor terminates lossless 2-port
 - Stage set for Fano bound analysis

□ Broadband, multiple-resonance models were compared

Streable-Pearson is best equivalent circuit

References

- □ S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, 1967
- □ R. F. Harrington, "Matrix Methods for Field Problems," Proc. IEEE, vol. 55, no. 2, pp. 136-149, Feb. 1967
- □ G. W. Streable and L. W. Pearson, "A Numerical Study on Realizable Broad-Band and Equivalent Admittances for Dipole and Loop Antennas," IEEE Trans. AP, vol. 29, no. 5, pp. 707-717, Sept. 1981
- □ F. Witt, "Broadband Matching with the Transmission Line Resonator" and "Optimizing the 80-Meter Dipole," ARRL Antenna Compendium, Vol. 4, pp. 30-48, American Radio Relay League, 1995
- M. Hamid and R. Hamid, "Equivalent Circuit of Dipole Antenna of Arbitrary Length," IEEE Trans. AP, vol. 45, no. 11, pp. 1695-1696, Nov. 1997
- B. Long, P. Werner, and D. Werner, "A Simple Broadband Dipole Equivalent Circuit Model," Proc. IEEE Int'l Symp. Antennas and Propagation, vol. 2, pp. 1046-1049, Salt Lake City, July 16-21, 2000

□ Hot topics in antenna engineering today

PBG/EBG, metamaterials, and twisted light

Design of impedance matching networks for arbitrary antenna impedance functions

- Perfect matching is always possible at any number of discrete frequencies
- Networks for single-frequency matching
- Networks for multiple-frequency matching

□ The theoretical (Fano) limit on matching a series RLC antenna impedance model

- Perfect matching is impossible over a continuous band of frequencies, even with networks of infinite complexity!
- How close can simple networks get to the limit?

Design software demo

Network design procedures

□ Lots of examples

S.D. Stearns, K6OIK Page 70

S.D. Stearns, K6OIK Page 71