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Outline

� Electromagnetics and antenna engineering basics

� Dipole impedance by antenna theory
¾ Induced EMF method
¾ King-Harrison-Middleton iterative methods (1943-46)
¾ Hill’s radiation pattern integration method (1967)

¾ MoM solution of Hallen’s or Pocklington’s integral equations

� Antenna impedance models
¾ What are they; what are they good for; why are they needed?

� Kinds of impedance models
¾ General mathematical approximations

¾ Equivalent circuits
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Outline continued

� Previous narrowband impedance models for dipoles at 
resonance & antiresonance
¾ Series and parallel RLC equivalent circuit models

¾ Witt’s series stub model (1995)

� New (better) narrowband models
¾ Immittance functions
¾ Approximating dipole impedance with immittance functions
¾ Converting immittance functions to equivalent circuits

¾ Using EDA software to compare models

� Broadband models that span multiple resonances
¾ Hamid-Hamid model (1997)
¾ Long-Werner-Werner model (2000)
¾ Streable-Pearson model (1981)
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Antenna Engineering Basics
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Hot Topics in Antenna Engineering Today

� Photonic/Electronic band-gap surfaces (PBG/EBG)

� Engineered “metamaterials”

� Twisted light
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Antenna Using PBG/EBG
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Metamaterials - The Boeing Cube
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Twisted Light Modes
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Fact or Myth?

� A dipole is center fed

� For lossless antennas, directivity and gain are the same

� A dipole has maximum gain when it is a half wavelength long

� An antenna’s radiation resistance is not unique.  It depends 
on a reference current or location

� In the far-field, the electric and magnetic fields have the same 
waveform as the transmitted signal

� In free space, a digital data signal transmitted with a dipole 
and received with a loop will have low bit error rate if the SNR
is high enough
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Fact or Myth?

� A dipole is resonant when its length is a half wavelength

� In free space, a half-wavelength dipole has a real (resistive)
feedpoint impedance

� The feedpoint resistance of a half-wave dipole depends on its 
diameter

� The feedpoint reactance of a half-wave dipole depends on its 
diameter

� The resonant length of a dipole depends on its diameter

� Dipoles are resonant at lengths slightly shorter than an odd 
number of half-wavelengths 

� Dipoles are anti-resonant at lengths slightly longer or shorter 
(which?) than an even number of half-wavelengths

� As frequency increases, a dipole’s impedance converges to a 
finite value or diverges to infinity (which?)

� If a linear wire antenna is resonant, then its feedpoint
impedance is real everywhere along its length
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Dipole Directivity and Gain versus Length
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Antenna Impedance Calculation

� Getting the current distribution
¾ Induced EMF method

¾ Hallen’s integral equation (1938)
¾ Pocklington’s integral equation (1897)

�Mathematical solution 
¾ Iterative and variational methods

– Approximation as ratio of infinite series

– King-Harrison (Proc IRE, 1943); Middleton-King (J Appl Phys, 1946)
¾ Hill’s radiation pattern integration method (Proc IEE, 1967)
¾ Harrington’s method of moments (Proc. IEEE, 1967)

� Numerical solution
¾ Many software programs are available for electromagnetic analysis

¾ Finite difference method (FD)
¾ Finite element method (FEM)
¾ Method of moments (MoM)

¾ Geometric theory of diffraction (GTD)
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Design Software for Antennas and Matching Networks

� Software for antennas and fields
¾ NEC (NEC-2 is public domain, NEC-4 is restricted)

¾ WIRA (Dr. Frank Harris’s program used at Technology for 
Communications International)

¾ WIPL-D (MoM for wires, plates, and dielectrics; free Lite version)
¾ Ansoft HFSS (finite element method, professional, expensive)

¾ Zeland IE3D (MoM) and Fidelity (finite difference method)
¾ CST Microwave Studio (MWS) (free 30-day trial)
¾ Many others …

� Electronic Design Automation (EDA) software for rf circuits 
and networks
¾ SPICE and its variants…  (Orcad pSPICE, free Lite version)
¾ ARRL Radio Designer (10 variable optimizer, discontinued)
¾ Ansoft’s Serenade SV (4 variable optimizer, discontinued)

¾ Ansoft’s Designer SV (no optimizer, free)
¾ Agilent’s Advanced Design System (ADS)
¾ Applied Wave Research’s Microwave Office (MWO) (free 30-day trial)
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Induced EMF Method

� Assumes sinusoidal current distribution

�Method gives pattern, radiation resistance, and reactance

� Accurate for pattern and impedance of dipoles up to half-
wavelength and verticals up to quarter-wavelength

� Inaccurate for impedance of dipoles longer than half-
wavelength and verticals longer than quarter wavelength

� Used widely for the design of AM broadcast vertical towers
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Induced EMF Method continued

� Radiation resistance

� Reactance
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Method of Moments

� Is a general method for solving integro-differential equations 
by converting them into matrix equations

� Introduced to electromagnetics by Roger Harrington in 1967

� Gives better results with Hallen’s integral than Pocklington’s

� Basis functions can be global or local

� Local basis functions break antenna into small conducting 
segments or patches
¾ Expresses current as weighted sum of basis functions

¾ Solves for the coefficients of the basis functions on all segments
¾ Calculates radiation pattern and feedpoint impedance from currents

� Software for antennas made of round wires, no dielectrics
¾ Numerical Electromagnetic Code (NEC), EZNEC, EZNEC ARRL, and 

NEC WinPlus
¾ WIRA (proprietary to Technology for Communications International)

� For antennas of round wires, flat plates, and dielectric slabs
¾ WIPL-D and WIPL-D Lite
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Limitations of Antenna Modeling by MoM (NEC)

� NEC is “blind” to current modes – computes total current, not 
resolved into common and differential current modes
¾ Current modes are “noumena;” total current is “phenomena”

� Antennas that rely on interacting modes do not scale if  λ/λg
or vp changes
¾ Dielectric insulation on wires affects common and differential current 

modes differently ⇒ published antenna designs often irreproducible

� Antennas of dielectric covered wire can’t be analyzed by NEC
¾ Twin lead folded dipole
¾ Twin lead J-pole
¾ Butternut radials

� Amateur literature
¾ “Plastic-insulated wire lowers the resonant frequency of halfwave

dipoles by about 3%.”  (ARRL Antenna Book, p. 4-31)

¾ “Plastic-insulated wire increases the antiresonant frequency of 1λ
dipoles by about 5%.”  (K6OIK, ARRL Pacificon 2003)
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Example Dipole Used in this Talk

� Freespace

� Omega
¾ 20 (exact)

� Length:  Half wavelength at 5 MHz
¾ 29.9792458 meters

¾ 98.3571056 feet

� Length-to-diameter ratio
¾ 11,013

� Diameter
¾ 0.107170 inches
¾ AWG # 9.56
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a is wire radius
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Feedpoint Resistance
Induced EMF Method versus MoM
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Feedpoint Reactance
Induced EMF Method versus MoM
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Comparison of Induced EMF versus MoM up to 3λ
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Compare to ARRL Antenna Book, p. 2-4, Figure 3.
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Dipole Impedance by MoM on the Smith Chart
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Dipole Impedance Near 1st Resonance

� For exact half-wave dipole, l = λ/2

� For resonant dipole, l < λ/2

� Dipole thickness

Independent of
wire diameter

Depends on
wire diameter
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Favorite Antenna Books

� Books for antenna engineers and students
¾ Antenna Engineering Handbook, 3rd ed., R. C. Johnson editor, 

McGraw-Hill, 1993, ISBN 007032381X.  First edition published in 
1961, Henry Jasik editor.

¾ C. A. Balanis, Antenna Theory, 2nd ed., Wiley, 1996, ISBN 
0471592684.  First edition published in 1982 by Harper & Row.

¾ J. D. Kraus & R. J. Marhefka, Antennas, 3rd ed., McGraw-Hill, 2001, 
ISBN 0072321032.  First edition published in 1950; 2nd edition 1988.  
The 3rd edition added antennas for modern wireless applications.

¾ R. S. Elliott, Antenna Theory and Design, revised ed., IEEE Press, 
2003, ISBN 0471449962.  First published in 1981 by Prentice Hall.

¾ S. J. Orfanidis, Electromagnetic Waves and Antennas, draft textbook 
online at http://www.ece.rutgers.edu/~orfanidi/ewa/

� Books for radio amateurs
¾ ARRL Antenna Book, 20th ed., Dean Straw editor, American Radio 

Relay League, 2003, ISBN 0872599043.
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Narrowband Models of Dipole Impedance
Near the 1st Resonance
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Blind Observer Problems

� Albert Einstein (1916)
¾ Blind observer can only measure force
¾ Gravity or acceleration?

¾ Equivalence principle & General theory of relativity

� Alan Turing (1950)
¾ Blind observer can only send and receive text messages to unknown 

entity
¾ Man, woman or machine?
¾ Turing test for Artificial Intelligence

� Steve Stearns, K6OIK (2004)
¾ Blind observer can only measure impedance at any frequency 
¾ Antenna or circuit?

¾ ? ? ?



S.D. Stearns, K6OIK
Page 27

ARRL Pacificon 2004
October 15, 2004

Introducing the Smart Dummy
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� Build dummy loads that act like real antennas
¾ Perform realistic tuning and loading tests without radiating

� Facilitate matching network design in winSMITH
¾ Overcome the 15 point limit on load impedance files

� Build and test wideband impedance matching networks
¾ Put the “proxy” antenna on the lab bench
¾ Adjust the matching network on the bench, instead of on the tower

� Calculate the Fano bound (1947)
¾ How much potential VSWR bandwidth is left on the table?
¾ What can more network complexity buy?

What Are Equivalent Circuits for Antenna Impedance 
Good For?
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Series RLC Equivalent Circuit
for Dipoles at Resonance
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R = 72.3 Ω
L = 26.9 µH
C = 39.8 pF
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Accuracy of Series RLC Model
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Parallel RLC Equivalent Circuit
for Dipoles at Antiresonance
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Example Dipole
1st antiresonance

R = 4,400 Ω
L = 7.77 µH
C = 37.5 pF



S.D. Stearns, K6OIK
Page 32

ARRL Pacificon 2004
October 15, 2004

Accuracy of Parallel RLC Model
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Witt’s Open Circuited Quarter-Wave Stub Model
for Dipoles at Resonance
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R0 = 72.6 Ω

KR = 3.18
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Accuracy of Witt’s Open Stub Model
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Better Lumped-Element Equivalent Circuits for 
Dipoles

From DC to Beyond the 1st Resonance
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Objective and Approach

� Find simple lumped-element equivalent circuits that 
approximate the impedance of a resonant dipole better than 
existing models, by using network synthesis

� Step 1:  Obtain reference impedance data for 5 MHz half-wave 
dipole from 1 MHz to 30 MHz
¾ Run broadband EZNEC sweep, and write to a MicroSmith .gam file

� Step 2:  Fit the rational function to the dipole’s impedance
¾ Order must be at least

¾ Program a general rational function by using Ansoft Serenade SV’s
“RJX” element or ARRL Radio Designer’s “SRL” element

¾ Use optimizer for S matrix goal from 1 MHz to 7 MHz
¾ Factor to ensure no poles or zeros in right half plane (RHP)

¾ Test to ensure positive real (p.r.)

linear
quadratic
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Approach continued

� Step 4:  Synthesize equivalent circuit from rational function
¾ Extract lumped-element circuit topology in Darlington form
¾ Continued fraction expansion gives ladder network

¾ Partial fraction expansion gives series/parallel network

� Step 5:  Check the result
¾ Program the circuit into Ansoft Serenade SV or ARRL Radio Designer
¾ Compare against original dipole
¾ Compare against other approximations
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The Subject of Ports is an Important Subject

� N-port networks:
¾ Terminals are paired
¾ Port voltages defined across terminal pairs

¾ Port currents defined as differential current into/out of terminal pairs 

� Laws of physics determine properties and relations among, 
port impedances
¾ Conservation of energy
¾ Causality

2-Port
Network

1-Port
Network

Resistors
Capacitors
Inductors
Stubs
Diodes
?Antennas?

Filters
Matching networks
Transformers
Transmission lines
Amplifiers
?Antennas?
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Immittance (Impedance & Admittance) Functions

� Analytic in the RHP, and no poles or zeros

� Poles and zeros allowed only on jω axis and in LHP

� Input immittances of passive reciprocal networks and devices 

� Real and imaginary parts are related by Poisson integral 

� Every immittance function has a Darlington equivalent circuit, 

� Port immittances of lumped R, L, C networks
¾ Are rational functions with positive coefficients
¾ Degrees of numerator and denominator polynomials differ by 0 or 1

¾ If the degrees are the same, the network has losses
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Darlington Forms

� Any one-port immittance function can be realized by a 
lossless two-port terminated by a resistor

� A resistor in series or shunt with a lossless one-port lacks 
generality – antennas don’t act like this

� Every antenna impedance function has an equivalent circuit 
in Darlington form

� The Darlington form is the starting point for understanding 
the Fano bound on impedance matching

Lossless
2-Port

Reactance

This……                                                 Not This!
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Finding a Rational Approximating Function

� Initial form

� Real part

� Imaginary part
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ARRL Radio Designer Optimization Code
* This file was generated initially by Serenade Schematic Netlister
* Edited manually for ARRL Radio Designer by K6OIK
A : 74.3954E-24
B : 27.5199E-6
D : 25.3813E9
E : 4.66048E-9
C : 72.2976
w :(2*pi*f)
r :(((b*e-a)*w^2+(c-d*e))/((e*w)^2+1))
x :((a*e*w^4+(b-c*e)*w^2-d)/(w*((e*w)^2+1)))

BLK
srl 122 R=r L=(x/w)

dipole5: 1POR 122
END
FREQ
Step 1MHz 7MHz 50kHz

END
NOUT
R1 = 50 

END
OPT
dipole5  R1 = 50
F 1MHz 7MHz S=antdata

END
NOPT
R1 = 50 

END
DATA
antdata: Z RI INTP=CUB
*Impedance of 5-MHz dipole by EZNEC.  Length=98.35710566 ft., Dia=0.1071697366 in., 
Omega=20
1.00MHz 1.89876587 -3035.57432668
...  [impedance data file continued...]
END
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Coefficients Found By ARD’s Optimizer in Four Tries

� First attempt with no constraints; negative coefficient

� Second attempt, forced coefficients > 0;  but RA < 0 at low f

� Third attempt, constrained c = de, so RA(jω) ≥ 0 for all ω

� Fourth attempt, eliminated negligible cubic term
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Finding a Rational Approximating Function
Final Solution with Proper Constraints

� Final form
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Confirm that Approximation is Positive Real

ZA analytic in RHP ;
pass

ZA real if s is real ;
pass

Poles on jω axis are 
simple and have 
positive real residues

;
pass

Real part of ZA ≥ 0 on jω
axis

;
pass
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××
{

{

☺



S.D. Stearns, K6OIK
Page 46

ARRL Pacificon 2004
October 15, 2004

Network Synthesis

� Divide, and voila !

� A three-element equivalent circuit in Darlington form !
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C = 39.7 pF
L = 27.2 µH
R = 9,445 Ω
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Accuracy of 3-Element Equivalent Circuit
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5-Element Equivalent Circuit

� A five-element equivalent circuit in Darlington form !

� 1 pole at the origin, 1 pole at infinity, 1 pair conjugate poles, 2 
pairs of conjugate zeros
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L1 = 945 nH
C1 = 12.5 pF
C2 = 39.0 pF
L2 = 26.7 µH
R = 8,992 Ω
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Apply Positive Real Tests

ZA analytic in RHP ;
pass

ZA real if s is real ;
pass

Poles on jω axis are 
simple and have 
positive real residues

;
pass

Real part of ZA ≥ 0 on jω
axis

;
pass
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Accuracy of 5-Element Equivalent Circuit

Impedance of reference dipole and 
equivalent circuit coincide perfectly
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Dipole Model in winSMITH

4 elements define the antenna over many octaves, 
leaving 6 elements to define a matching network.  
Load Data table is not needed!
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Matching Network Design in winSMITH
5 MHz to 5.5 MHz, VSWR < 1.48

Matching Network Antenna Model
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Broadband Models of Dipole Impedance
Spanning Multiple Resonances and Antiresonances
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Hamid & Hamid’s Broadband Equivalent Circuit (1997)

� Foster’s 1st canonical form with small losses added

� Fits dipole impedance best near antiresonances

� Reference: Ramo, Whinnery, and Van Duzer, Fields and Waves 
in Communication Electronics, Wiley, 1965, Section 11.13

Example Dipole: C1 = 22.9 pF C2 = 30.3 pF C3 = 57.1 pF
C0 = 43.9 pF L1 = 12.5 µH L2 = 2.26 µH L3 = 522 nH
L∞ = 4.49 µH R1 = 4,970 Ω R2 = 3,338 Ω R3 = 2,702 Ω
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Accuracy of Hamid & Hamid’s Equivalent Circuit
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Accuracy of Hamid & Hamid’s Equivalent Circuit

Resonant 
resistances 
are wrong!
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Foster’s 2nd Canonical Form with Small Losses Added

� Fits dipole impedance best near resonances

� Reference: Ramo, Whinnery, and Van Duzer, Fields and Waves 
in Communication Electronics, Wiley, 1965, Section 11.13

Example Dipole
C∞ = 5.44 pF
C1 = 42.9 pF
C2 = 5.05 pF
C3 = 1.92 pF

L0 = ∞
L1 = 24.9 µH
L2 = 22.8 µH
L3 = 21.4 µH
R1 = 72.2 Ω
R2 = 106 Ω
R3 = 122 Ω
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Accuracy of Foster’s 2nd Form With Small Losses
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Accuracy of Foster’s 2nd Form With Small Losses
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Long, Werner, & Werner’s Broadband Model (2000)
Frequency Scaled to f0 = 5 MHz, Ω′ = 7.8

Cs = 150 pF C11 = -975 pF R11 = 13.1 Ω C21 = 17.6 pF R21 = 700 Ω
Z1 = 215 Ω E1 = 44.9 deg Z2 = 195 Ω E2 = 46.9 deg
C12 = 24.0 pF R12 = 3,600 Ω C22 = -3.00 pF R22 = 295 Ω
C13 = 8.33 pF R13 = 500 Ω
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Accuracy of Long, Werner, & Werner’s Model

Resonant frequency 
5.3 MHz is too high!
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Accuracy of Long, Werner, & Werner’s Model

Resonant resistance 
96 Ω is too high!
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Streable & Pearson’s Broadband Equivalent Circuit (1981)
Frequency Scaled to f0 = 5 MHz, Ω′ = 10.6

C11 = 86.6 pF C31 = 15.0 pF C51 = 7.17 pF C71 = 4.51 pF
L11 = 13.8 µH C32 = 33.8 pF C52 = 8.87 pF C72 = 3.98 pF
R11 = 0.663 Ω L31 = 11.7 µH L51 = 10.9 µH L71 = 10.3 µH
R12 = 2,201 Ω R31 = 4,959 Ω R51 = 6,514 Ω R71 = 7,542 Ω
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Accuracy of Streable & Pearson’s Equivalent Circuit

3rd Antiresonant
frequency is too high

Resistance should 
decrease to zero
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Accuracy of Streable & Pearson’s Equivalent Circuit

λ/2 impedance
88+j47 Ω

is a bit off
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Comparison of Antenna Impedance Models

Antenna 
Impedance 

Model

Approximation 
Accuracy

Realizable 
Equivalent 

Circuit

Darlington 
Form

Element 
Types

yes R, L, C

variable 
resistor, 
TL stub

K6OIK 3-Element good yes yes R, L, C 0.90 f0  to 

1.08 f0

K6OIK 5-Element excellent yes yes R, L, C DC to 1.4 f0

Streable-Pearson excellent yes no R, L, C no limit

R, L, C
Fosters 2nd Form 
with small losses

fair, best near 
resonances

yes no R, L, C no limit

R, C, TL

yes

no

no

Maximum 
Frequency 

Range
Series R L C fair yes 0.94 f0  to 

1.05 f0

Witt model good no 0.6 f0  to 

1.2 f0

Hamid-Hamid poor yes no limit

Long-Werner-
Werner

fair no 5 octaves
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Ansoft Serenade SV vs ARRL Radio Designer
Lessons Learned

� ARD runs on the netlists generated in Serenade SV with 
simple modifications to observe ARD restrictions
¾ ARD restricts names and labels to 8 characters (no spaces)

� Serenade SV’s optimizer runs faster than ARD’s

� ARD’s optimizer gives better answers than Serenade SV
¾ ARD 6 digits; Serenade SV 5 digits

� ARD accepts goals on S, Y, or Z matrices, but only one; 
Serenade SV accepts compound goals

� Serenade SV accepts data in files or data blocks; ARD uses 
only data blocks

� Serenade SV creates the 1st line of a data block of the form
Antdata:  IMP  INTP = CUB

� ARD accepts the 1st line of a data block of the form
Antdata:  Z  RI  INTP = CUB   (but apparently ignores INTP = CUB)
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Summary and Conclusions

� Classical series and parallel RLC approximations of dipoles 
at resonance and antiresonance are good over very limited 
bandwidth

� Approximations of an immittance function can be realizable 
or not

� Realizable approximations can be converted to equivalent 
circuits

� Two new narrowband approximations for dipole impedance 
near resonance have been obtained by network synthesis
¾ Lumped-element RLC networks having 3 and 5 elements
¾ The 5-element network is an extremely accurate fit to the dipole
¾ Darlington form – single resistor terminates lossless 2-port

¾ Stage set for Fano bound analysis

� Broadband, multiple-resonance models were compared
¾ Streable-Pearson is best equivalent circuit
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Tomorrow’s Presentation

� Hot topics in antenna engineering today
¾ PBG/EBG, metamaterials, and twisted light

� Design of impedance matching networks for arbitrary 
antenna impedance functions
¾ Perfect matching is always possible at any number of discrete 

frequencies

¾ Networks for single-frequency matching
¾ Networks for multiple-frequency matching

� The theoretical (Fano) limit on matching a series RLC antenna 
impedance model
¾ Perfect matching is impossible over a continuous band of 

frequencies, even with networks of infinite complexity!

¾ How close can simple networks get to the limit?

� Design software demo
¾ Network design procedures

� Lots of examples
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The End


