APRS via the ISS – A Quick Tutorial

March 10, 2008 – Rev. 4

AF6DS

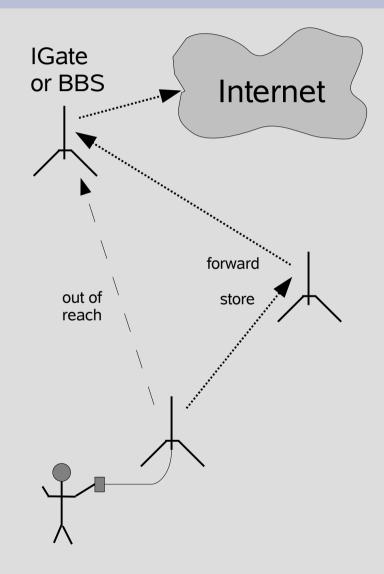
Copyleft © 2008 Peter Chow All Wrongs Preserved

Sending APRS Packets via the ISS

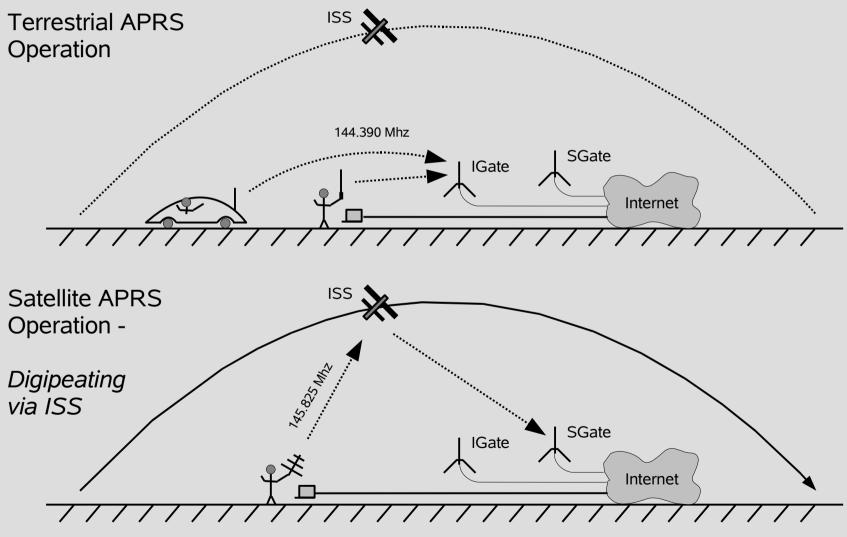
Concept:

- To have the International Space Station "digipeat" digitally repeat your transmitted APRS packet(s) to any ground-based Internet-linked station (called SGate)
- Verify that your ISS digipeated message was recorded by APRS tracking websites

Purpose:


 For fun – and possibly for sending emergency messages out-of-area (although unreliable)

What is APRS[®]?


- Automatic Packet Reporting System[®]
- A digital (non-voice) method of transmitting messages, status, and position – using specially formatted AX.25 packet messages
- TNC (Terminal Node Controller), similar to a computer dial-up modem, transmits packets and APRS data over the airwaves
- APRS is normally operated terrestrially for 2m VHF in USA: 144.390 Mhz FM simplex
- Created by, and is a registered trademark of, Bob Bruninga WB4APR (www.aprs.org)

Packet Digipeating Concept

- Digitally repeating an AX.25 packet on simplex frequency using a store-andforward method, e.g. like a children's Telephone Game (Chinese Whisper)
- Allows packets to travel farther using intermediate hops

APRS – Terrestrial vs. Satellite

ISS Pass Opportunity

- Window of opportunity for transmitting to ISS
 - Each ISS orbit period is about 90 minutes
 - 5 to 10 minute window per orbit pass
 - Groups of consecutive passes about twice a day, roughly 12 hours apart
- Number of usable consecutive passes Depends on your latitude, e.g.
 - 1 pass near equatorial latitudes
 - Up to 7 passes near the 50° latitude
 - But typically at other latitudes:
 - 1 to 2 usable passes within an 1 ½ hour period
 - Rarely: 3 usable passes in a 3 hour period

ISS Pass Prediction

Pass prediction websites

- http://www.issfanclub.com
- http://space.cweb.nl/space3d_iss.html
- http://www.n2yo.com/?s=25544
- http://www.amsat.org/amsat-new/tools/predict/

Pass prediction computer freeware

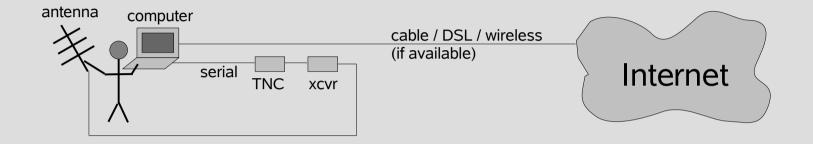
- http://www.amsat.org/amsat-new/tools/software.php
- Windows:
 - SatScape
 - Orbitron
 - WXtrack
- Unix:
 - predict with gsat client
 - gpredict
 - ktrack

ISS Station Operation

- ISS universal callsign alias: ARISS
 Other callsigns: NA1ISS, RS0ISS, DP0ISS, etc.
- Kenwood TM-D700, etc. on-board the ISS
- Packet digipeating operations
 - 145.825 Mhz simplex FM since September 2007 – hopefully it will be permanent
 - ISS digipeater callsign: ARISS
- ISS beacon message:

RS0ISS-4>CQ,SGATE:

>ARISS - International Space Station (BBS/APRS on)


• More details at:

http://spaceflight.nasa.gov/station/reference/radio/ http://www.rac.ca/ariss/oindex.htm

Ground Station Equipment Required

- Any Tech / Gen / Extra class amateur license
- 2 meter VHF transceiver
 - No PL tone required (i.e. old equipment OK)
 - 5 watt power with Log-Periodic or Yagi antenna
 - 10 to 25 watt power with ground-plane antenna
- 1200 baud packet TNC and/or software plus transceiver model-specific TNC cable
- Antenna: beam, ground-plane, eggbeater
- Computer with serial port and Internet access
- Satellite / ISS tracking software or website
- Orientation / compass, and local / UTC clock

Ground Station Equipment Setup

- Internet access might be unavailable in disaster and remote areas or mobile ops
- No transceiver pre-amp normally required
- Transceiver mic and speaker connections are dedicated to the TNC – voice ops unavailable
- Some TNCs accept a GPS connection for APRS beacon operation (don't use with ISS)

Typical Interfaces for TNC Hardware

Ground-Plane Antenna

- No aiming required
 - Omnidirectional
 - Stationary
 - Works indoors too \rightarrow
- Unity gain (1/4 wave)
 - More transmit power required than Log-Periodic or Yagi
 - 10 to 25 watts (to ISS)
- Radiation pattern
 - Low takeoff angle
 - Null at zenith

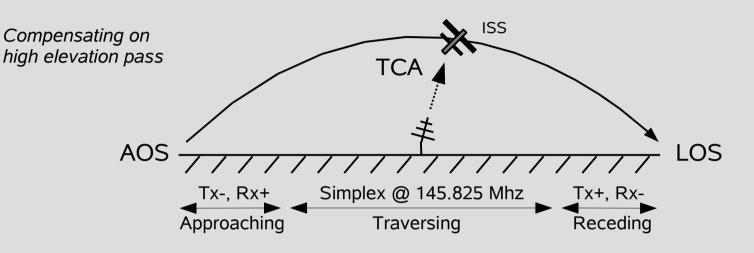
Other Antennas for Satellite Use

Beam: Yagi / Log-Periodic

- Aiming required
 - Directional radiation
- High gain
 - Less transmit power required than ground-plane antenna
 - 5 watts sufficient
- Better suited for outdoor use with handheld operation, weather permitting

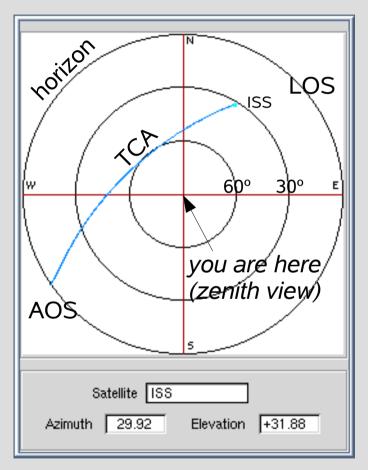
EggBeater

- No aiming required
 - Omnidirectional
 - Stationary
- Unity gain
 - More transmit power required than Log-Periodic or Yagi
- Radiation pattern
 - Circular polarization
 - No null at zenith
- Expensive to buy, cheaper to build


Ground Station Operation Overview

- Setup
 - Verify your setup with terrestrial APRS operation
 - Pre-program transceiver with Doppler frequencies
 - Set TNC parameters (in TNC Command mode)
 - Update TLE, track & predict ISS orbit passover
- Operation
 - Check websites for recent ISS packet activity
 - Adjust transceiver for Doppler shift, if necessary
 - Transmit APRS packet (in TNC Convers mode)
 - If ISS digipeated packet is not received by your TNC, then check at APRS tracking websites
 - If nothing logged, retry transmission in 1 minute

Compensating for Doppler Effect


- Doppler Effect frequency shift is a factor when the ISS is approaching and receding
 - ISS travels roughly 214 statue miles (344 Km) above the earth @ 17,500 mph (28,000 Kph)
 - Ground station transceiver should frequency compensate when the ISS is near AOS¹ and LOS²
 - Only compensate on high elevation passes
 - Compensation might not be required on 2m VHF, since Doppler shift is less than 3 Khz
- ¹ AOS Acquisition of Signal, i.e. ISS rising above the horizon ² LOS – Loss of Signal, i.e. ISS dropping below the horizon

Transceiver Setup for Doppler Shift

- Pre-program AOS and LOS shift frequencies into the transceiver – using odd-split offsets
 - Most 2m transceivers have 5 Khz step minimum
 AOS: Tx 145.820 Mhz, Rx 145.830 Mhz FM
 LOS: Tx 145.830 Mhz, Rx 145.820 Mhz FM
 TCA: 145.825 Mhz FM simplex (Tx = Rx)
 - TCA Time of Closest Approach, i.e. maximum elevation

AOS / TCA / LOS Frequency Adjust

Azimuth / Elevation chart for ISS orbit pass (in light blue) annotated predict / gsat chart AOS (approaching) Tx 145.820 Mhz Rx 145.830 Mhz TCA (traversing) 145.825 Mhz simplex (Tx = Rx)LOS (receding) Tx 145.830 Mhz Rx 145.820 Mhz

TNC Settings (via terminal session)

- TNC has two modes: Command and Convers
- Recommended settings in Command mode:

mycall <your_callsign-ssid>
passall on, monitor on, mcon on, flow on,
paclen 70

axdelay **plus** txdelay >= 3

then set the unproto path string to:

unproto aprs via ariss

whereas for terrestrial operation the unproto path string would be something like: unproto aprs via wide2-1 and turn beacon(ing) off

Switch into Convers mode by typing:

k **or** convers

APRS Type / Syntax (Convers mode)

- There are 3 main APRS types: message, status, position (designated by the first character of the Convers mode string)
- In TNC Convers mode, these types can be specified as follows (maximum 64 bytes): *Position*

```
[GG##gg]...message...
```

where GG##gg is the Maidenhead grid square, e.g. cm87xi

Status (>)

>...comments...

>GG##gg/-...comments...

Message (:)

:<9 character TOCALL>:...message...

APRS Position Type – Lat / Long

An example of specifying an APRS position type with latitude / longitude coordinates

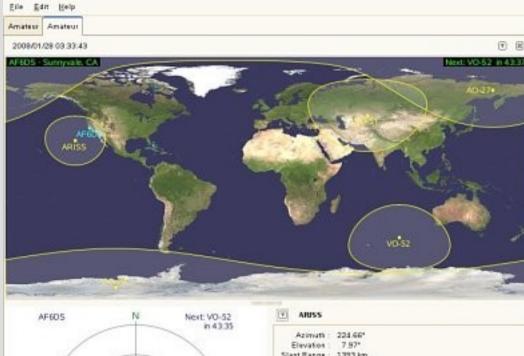
APRS map symbol / icon info:

http://eng.usna.navy.mil/~bruninga/iss aprs/issicons.html
http://eng.usna.navy.mil/~bruninga/aprs/symbolsX.txt

Orbital Description of Satellites

 A satellite's orbit can be mathematically described by Keplerian Elements – encoded in a format called Two-Line Element (TLE)

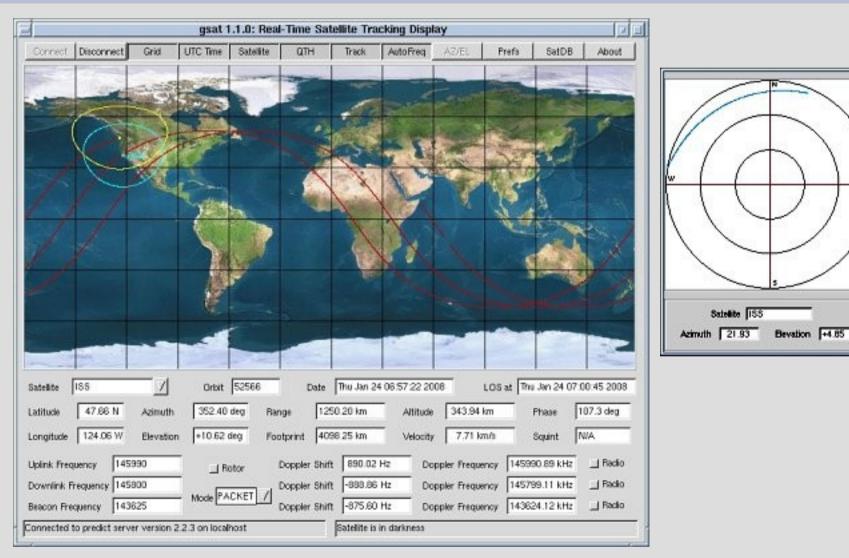
• TLE format:

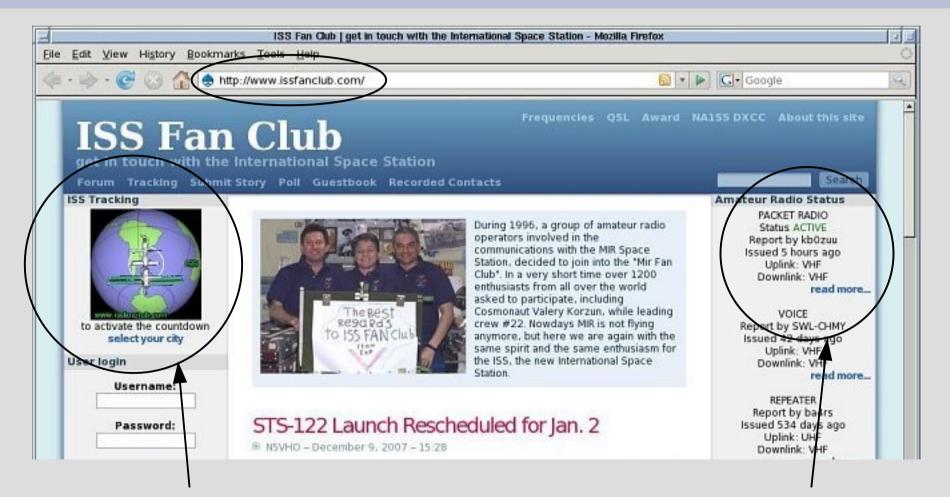

ISS

1 25544U 98067A 08022.20136510 .00020651 00000-0 12618-3 0 7634 2 25544 51.6401 54.3302 0005382 315.0141 127.5080 15.77334577525339

• Satellite tracking software accepts TLE data

- Make sure the orbital data is up-to-date, since the ISS orbit may be boosted by visiting US Space Shuttle or Russian Progress spacecraft
- Obtain the latest TLE data from: http://www.celestrak.com/NORAD/elements/stations.txt


Prediction SW - gpredict (Linux)



- World map
- Your location
- Satellites & orbits
- Az / El chart
- Future pass prediction
 - Time to AOS
- Doppler shift frequencies
- TLE updates

Prediction SW - predict / gsat

Prediction Website - issfanclub.com

Click on **select your city** for pass prediction info

Click on **read more...** for activity reports

Sending the ISS Digipeated Packet

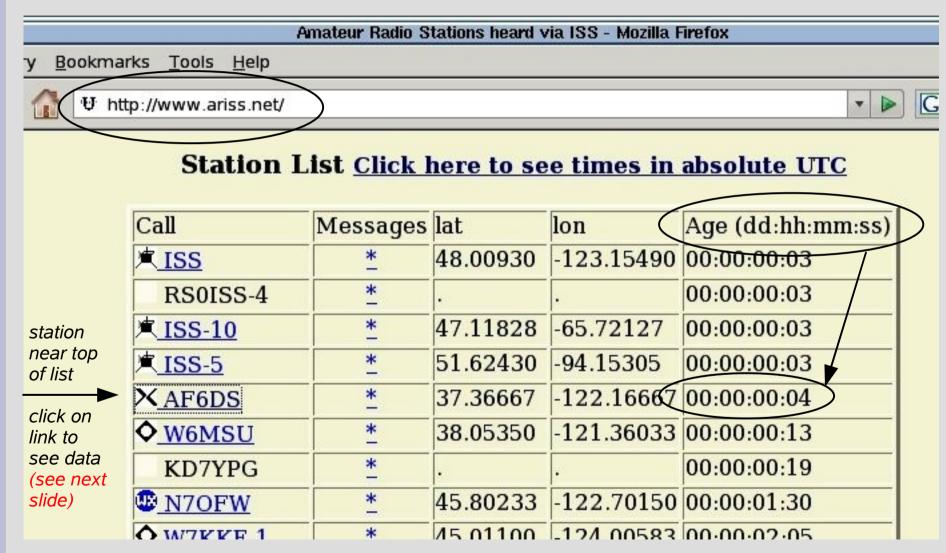
What you type in TNC Convers mode to send, e.g.:

[cm87xi]Happy trails ISS !<Enter>

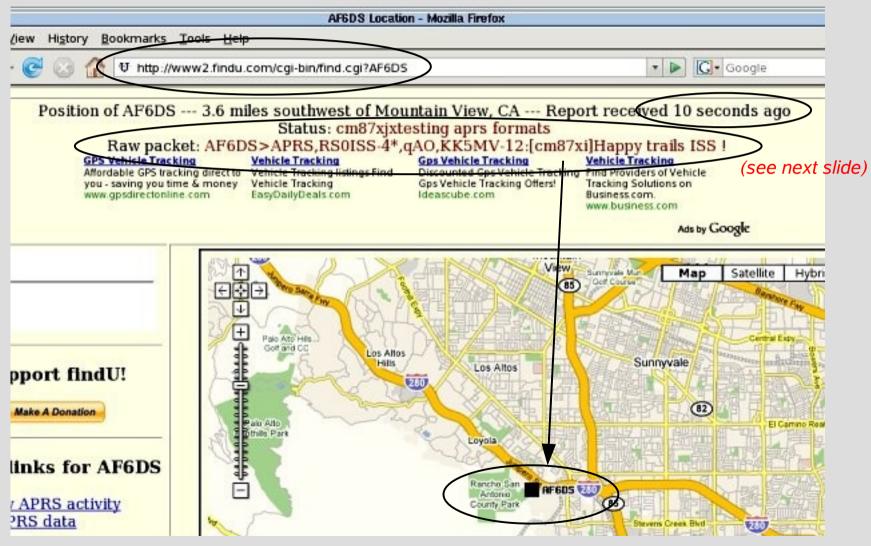
What your TNC transmits (and what you see):

AF6DS>APRS,ARISS:

[cm87xi]Happy trails ISS !

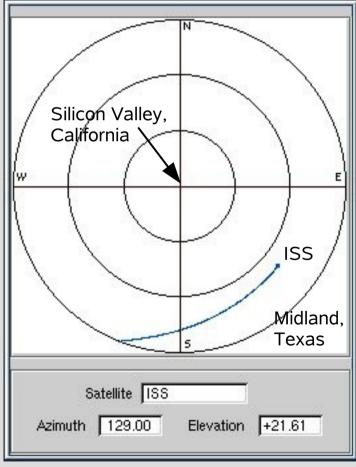

What the ISS digipeats (and what you might see):

AF6DS>APRS,RS0ISS-4*:ARISS digipeated as RS0ISS-4[cm87xi]Happy trails ISS !


Note: you will see your callsign instead of AF6DS

- Digipeating station inserts an asterisk (*) after its own callsign in the packet string
- Packets with an asterisk (*) marked ISS callsigns are logged by SGate stations

ISS APRS Tracking Confirmation



ISS APRS Tracking Confirmation

Anatomy of an ISS Digipeated Packet

Raw packet: AF6DS>APRS, RS0ISS-4*, qAO, KK5MV-12:[cm87xi]Happy trails ISS !

January 25, 2008 04:07 UTC

- KK5MV (w/SSID of 12) is the SGate for this packet – QTH in Texas
- From Silicon Valley → ISS → Midland, Texas → Internet !
- 1200 mile city-to-city single-hop digipeat
- Thanks ISS and SGate stations like KK5MV !

Emergency Welfare Message via ISS

- During a major disaster (or for remote area operation), digipeat your APRS messages outside the region (via the ISS)
 - Infrastructure outage: power, phones, Internet, repeaters, or HF operation is unavailable / busy
 - Your operation needs to be totally self-sufficient
 Digipeating 1000⁺ miles is possible via the ISS
- Unreliable! no means to verify if your message reached APRS tracking websites
- Pre-arrange with concerned parties where to look for your status when a disaster occurs

Improving Your Chances for Success

- Verify packet / TNC setup terrestrially first
- Check for recent packet activity:
 - http://www.ariss.net
 - http://www.issfanclub.com
 - ISS digipeating available 24 hours/day, but might be off during: docking, EVA (spacewalks), etc.

Check for and use the latest orbital data

- http://www.celestrak.com/NORAD/elements/
- http://www.issfanclub.com website tracking orbital data may get out-of-date occasionally
- Distant ground or ISS packet collisions are often not detected by your TNC – so retry

Other Things to Note

- Cost:
 - TNC: ~ \$200⁺ USD
 - Antenna: GP ~ \$35⁺ USD, Eggbeater ~ \$300 USD
 - Software: freeware / open source available
- Turn off *Rx Save* (power management) mode in HTs, to allow proper decoding of received packets by the TNC – quicker battery drain!
- APRS CQ and ISS packet BBS usage also possible, but maybe difficult in heavy traffic

Glossary

AOS – Acquisition of Signal (rise above horizon) **APRS** – Automatic Packet Reporting System AX.25 – X.25 packet protocol for Amateur radio Digipeat(ing) – Digitally repeating packets IGate / SGate – Internet / satellite gateway **ISS** – International Space Station Keplerian Elements / TLE – orbital description Log-Periodic / Yagi – directional beam antenna LOS – Loss of Signal (drop below horizon) Packet – digital form of data transmission TNC – Terminal Node Controller

Tracking Websites and Data

Satellite Tracking

http://www.issfanclub.com http://www.ariss.net http://www.amsat.org/amsat-new/tools/predict/ http://space.cweb.nl/space3d_iss.html

http://www.n2yo.com Of http://www.n2yo.com/?s=25544
http://www.heavens-above.com

Keplerian Elements

http://www.celestrak.com/NORAD/elements/
http://www.amsat.org/amsat/ftp/keps/current/nasa.all

APRS Tracking and Map Symbols

APRS Tracking

http://map.findu.com/<your_callsign-ssid>
http://map.findu.com/<your_callsign>*
http://aprs.fi/info/<your_callsign>
http://www.aprsworld.net
http://www.jfindu.net
http://wx.findu.com/<your_callsign>

APRS Map Symbols and Icons

http://eng.usna.navy.mil/~bruninga/issaprs/issicons.html http://eng.usna.navy.mil/~bruninga/aprs/symbolsX.txt http://www.kc2hwb.com/APRS_symbols.htm http://wa8lmf.net/aprs/APRS_symbols.htm

References

http://spaceflight.nasa.gov/station/reference/radio/ http://www.amsat.org/amsat-new/ariss/#freqs http://web.usna.navy.mil/~bruninga/iss-faq.html http://web.usna.navy.mil/~bruninga/astars.html http://www.marexmg.org/fileshtml/isspacketmanual.html http://www.rac.ca/ariss/oindex.htm http://ronhashiro.htohananet.com/amradio/spacecomm/getting-started-iss.html http://ronhashiro.htohananet.com/amradio/spacecomm/doppler-and-the-iss.html http://www.amsat.org/amsatnew/information/faqs/Intro_sats.pdf http://www.arrl.org/tis/info/HTML/aprs/posreporting.html ftp://ftp.tapr.org/aprssig/aprsspec/spec/aprs101/APRS 101.pdf

http://www.users.cloud9.net/~alan/ham/aprs/aprs.pdf

Questions / Comments? and Thanks!

Any and all errors, omissions, misconceptions, and cheesy graphics are solely mine

af6ds@yahoo.com

And many thanks to the following who reviewed this presentation and provided comments: KE6AFE, N5VHO

PCSat Digipeating

PCSat Digipeating Setup

• General info:

http://eng.usna.navy.mil/~bruninga/pcsat.html

- PCSat operational again on Feb. 8, 2008
- Operational only during mid-day sun?
- Set the unproto path string to: unproto aprs via w3ado-1 (w3ado-1 is default callsign)
- Same FM simplex frequency of 145.825 Mhz
- PCSat Satellite Tracking:
 - Software same as for tracking the ISS
 - Website: http://www.n2yo.com/?s=26931
- APRS tracking website URL:

http://pcsat.aprs.org **Of** http://pcsat.findu.com

TNC Operation with PCSat

• PCSat beacon message received by the TNC: W3ADO-1>ID,SGATE: W3ADO-1/R XBAUD/G MAIL-1/B

W3ADO-1>BEACON,SGATE: T#714,132,138,145,142,214,00111111,0001,1

An example of a TNC Convers mode send string:

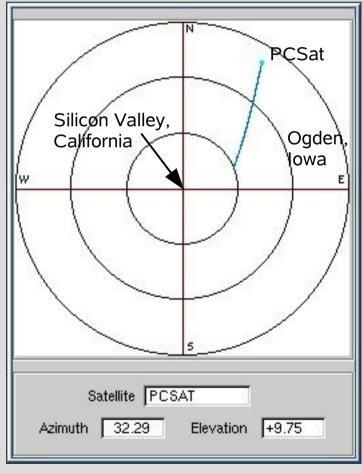
[cm87xi]APRS via PCSAT test<Enter>

PCSat APRS Tracking Confirmation

Amateur Radio Stations heard via PCSat, ANDE and RAFT - Mozilla Firefox

Bookmarks Tools Help rv

U http://www.findu.com/cgi-bin/pcsat.cgi http://pcsat.aprs.org


Station List Click here to see times in absolute UTC

	Call	Messages	lat	lon	Age (dd:hh:mm:ss)
station near top of list	<u>ANDE-10</u>	*	30.25554	-78.63674	00:00:00:04
	/ <u>▼ PCSat</u>	*	44.25515	-113.42513	00:00:00:04
	R PCSat-5	*	58.04181	-96.31146	00:00:00:04
	ANDE-5	*	15.74077	-91.96631	00:00:00:04
	PCSAT-10	*	66.53775	-63.02673	00:00:00:04
	ANDE	*	0.38764	-103.27485	00:00:00:04
	AF6DS	*	37.33333	-122.08333	00:00:00:06
click on link to	♦ KC9XG-4	*	41.57167	-88.05500	00:00:00:09
see data					; I

G

Anatomy of a PCSat Packet Digipeat

Raw packet: AF6DS>APRS, W3ADO-1*, qAo, N0AN: [cm87xi]APRS via PCSAT test

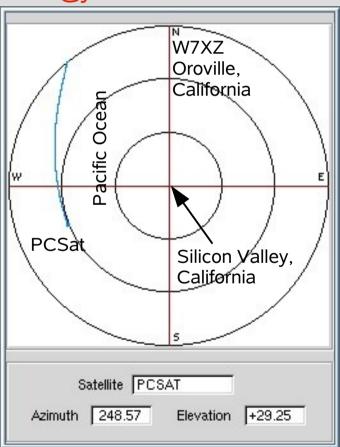
February 15, 2008 15:33 UTC

- NOAN is the SGate for this packet – QTH in lowa
- From Silicon Valley → PCSat → Odgen, Iowa → Internet !
- 1500 mile city-to-city single-hop digipeat
- Thanks PCSat and SGate station N0AN !

Sending APRS Email via PCSat

- Service provided by WU2Z in New Jersey
- In TNC Convers mode, send the following string:
 - :EMAIL :email_address message<Enter>
 where
 - callsign field is 9 characters between the colons(:), hence EMAIL is followed by 4 spaces
 - *email_address* and *message* is 64 bytes (chars) max, and separated by a space
- An example:
 - :EMAIL :af6ds@yahoo.com testing email via pcsat (see next slide)

Anatomy of a PCSat Email Digipeat

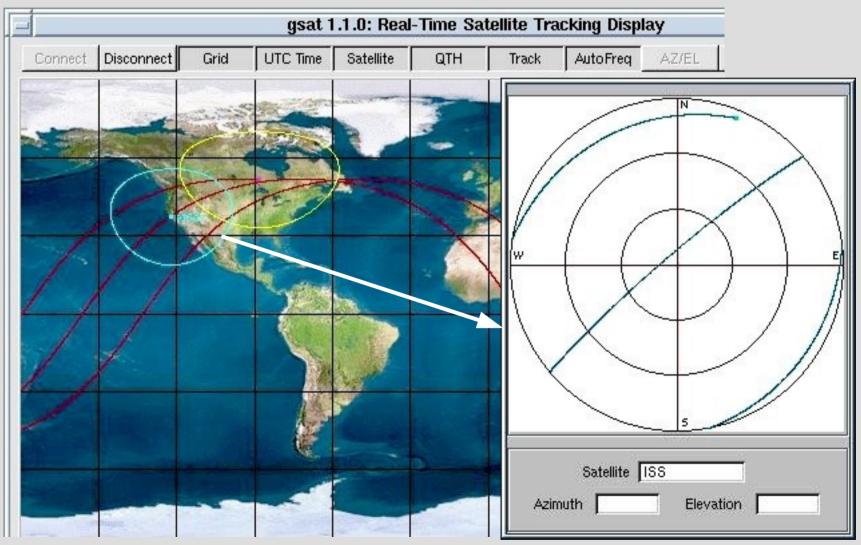

Raw packet (from www.findu.com): AF6DS>APRS,W3ADO-1*,qAO,W7XZ-6::EMAIL :af6ds@yahoo.com testing email via pcsat

Received email:

Date:	Fri, 15 Feb 2008 21:02:05 -0500 (EST)		
Date:	Date header was inserted by mta4.srv.hcvlny.cv.net		
From:	ksproul@rci.rutgers.edu 🔋 Add Mobile Alert		
Subject:	APRS Message from AF6DS		
To:	afőds@yahoo.com		

testing email via posat

Message received by MacAPRS IGate station WU2Z Located in NO BRUNSWICK, NJ APRS path = AF6DS>APRS,W3ADO-1*,qAO,W7XZ-6



AF6DS

February 16, 2008 2:03 UTC

Backup Slides / Info

3 Usable Consecutive Passes in 3 Hrs

AF6DS