Weird Waves Exotic Electromagnetic Phenomena

Steve Stearns, K60IK

Consultant (gun for hire) E&M Phenomena, Antennas, Metamaterials, Metasurfaces, Non-Foster Circuits <u>k6oik@arrl.net</u> <u>stearns@ieee.org</u>

Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 16-18, 2015

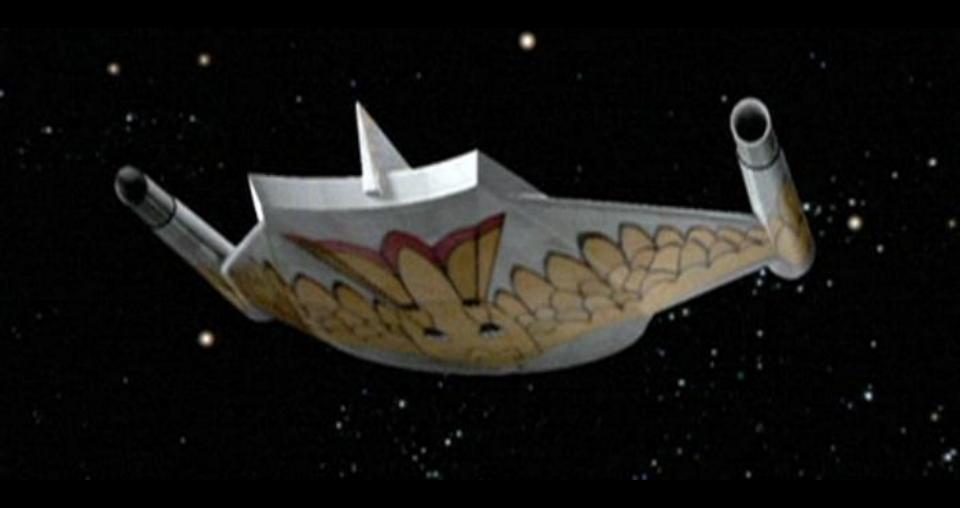
ARRL Pacificon Presentations by K60IK

		Archived at
1999	Mysteries of the Smith Chart	http://www.fars.k6ya.org
2000	Jam-Resistant Repeater Technology	
2001	Mysteries of the Smith Chart	\checkmark
2002	How-to-Make Better RFI Filters Using Stubs	
2003	Twin-Lead J-Pole Design	
2004	Antenna Impedance Models – Old and New	\checkmark
2005	Novel and Strange Ideas in Antennas and Impedance Matching	
2006	Novel and Strange Ideas in Antennas and Impedance Matching I	√
2007	New Results on Antenna Impedance Models and Matching	\checkmark
2008	Antenna Modeling for Radio Amateurs	\checkmark
2009	(convention held in Reno)	
2010	Facts About SWR, Reflected Power, and Power Transfer on Real Transmission Lines with Loss	✓
2011	Conjugate Match Myths	\checkmark
2012	Transmission Line Filters Beyond Stubs and Traps	\checkmark
2013	Bode, Chu, Fano, Wheeler – Antenna Q and Match Bandwidth	\checkmark
2014	A Transmission Line Power Paradox and Its Resolution	\checkmark
2015	Weird Waves: Exotic Electromagnetic Phenomena	\checkmark
2015	The Joy of Matching: How to Design Multi-Frequency and Multi- Band Match Networks	✓
	Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA	Dctober 16-18, 2015

Outline

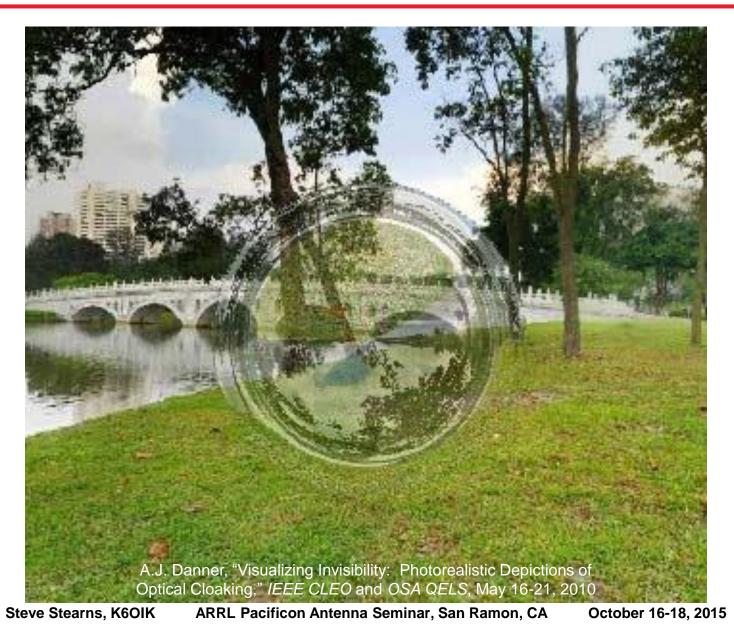
3

- Electromagnetic Cloaking
- Free-space "localized" waves
 - Knotted waves, linked waves, and vortex waves
- Vortex waves as Bessel modes
 - Constant phase surface
 - Wavelength
 - Phase velocity
 - Polarization
 - Poynting vector, power flow, momentum
 - Velocities: phase, energy, signaling, information

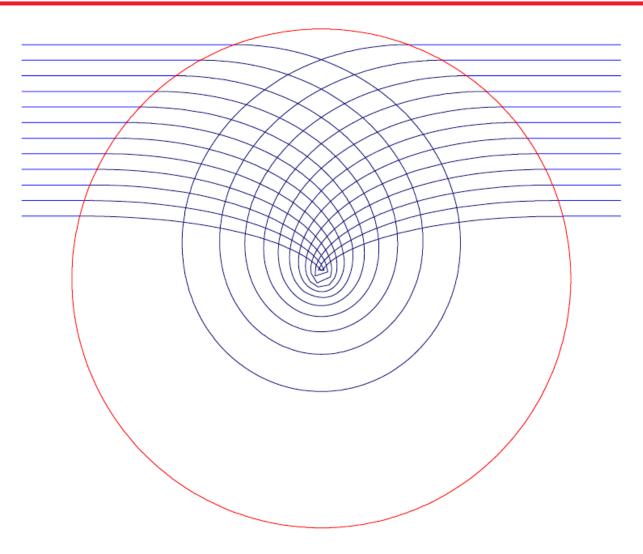

Comments, interpretation and speculation

Reconciliation with Einstein

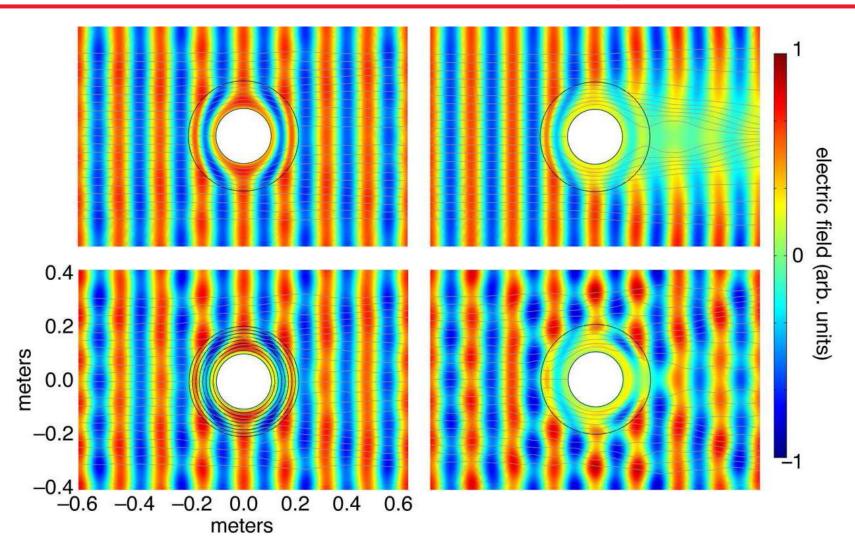
Electromagnetic Cloaking


Cloaking versus Invisibility

- Invisibility requires more than transparency and antireflective surfaces
 - Optical lenses are transparent and can have anti-reflective surfaces; yet you see them
- Cloaking requires more than invisiblity
 - > An Eaton lens can be invisible, but its volume is filled
 - No room for a "payload"
- Cloaking hides a region of space which can contain a hidden payload
- Idea was introduced in the Star Trek television series, season 1, episode 9, on December 15, 1966, which featured a Romulan Bird Of Prey



An Invisible Sphere



How It Works Ray Paths Through an Invisible Eaton Lens

U. Leonhard and T. Philbin, Geometry and Light: The Science of Invisibility, Dover, 2010

Computer Simulations of Cloaking at 3 GHz

S.A. Cummer, et al., "Full-Wave Simulations of Electromagnetic Cloaking Structures," arXiv 0607242, July 2006

ARRL Pacificon Antenna Seminar, San Ramon, CA

Summary

- Cloaking requires controlling of scattered and reaction fields
- Methods
 - Axial cloaking using ordinary materials (mirrors and lenses)
 - Transformation optics using ordinary or meta materials
 - Reflection (carpet) cloaking using a metasurface or Pendry lens
 - Surround cloaking using metamaterial shell(s): Pendry 2006
- Cloak bandwidth set by metamaterial properties
- Objects inside the cloak cannot see or communicate out at the cloaked wavelengths but can communicate out at other wavelengths
- Applications:

- Radar invisibility (avoid traffic tickets)
- Stealth antennas
- Ground independent antennas (cloak the earth under an antenna)
- Sports invisible balls (invisible baseballs, basketballs, golf balls, pingpong balls, tennis balls,...)

Weird Waves

Heaviside's Vector "Duplex" Equations for Maxwell's Theory

$$\nabla \times \mathbf{E} = -\mathbf{M} - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
$$\nabla \cdot \mathbf{D} = \rho_e$$
$$\nabla \cdot \mathbf{B} = \rho_m$$
$$\mathbf{D} = \varepsilon \mathbf{E} \qquad \mathbf{J} = \sigma_e \mathbf{E}$$
$$\mathbf{B} = \mu \mathbf{H} \qquad \mathbf{M} = \sigma_m \mathbf{H}$$

"And God said, Let there be light; and there was light." Genesis 1:3

Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 16-18, 2015

D'Alembert's Wave Equations in Free Space

Time domain

14

$$\nabla^{2}\mathbf{E} = \mu \varepsilon \frac{\partial^{2}}{\partial t^{2}}\mathbf{E}$$
$$\nabla^{2}\mathbf{H} = \varepsilon \mu \frac{\partial^{2}}{\partial t^{2}}\mathbf{H}$$

Frequency domain, complex phasor form

$$\nabla^2 \mathbf{E} + \beta^2 \mathbf{E} = 0$$
$$\nabla^2 \mathbf{H} + \beta^2 \mathbf{H} = 0$$

- Solved analytically by a technique called "separation of variables"
- Solved numerically by computational electromagnetics software (CEM) – aka "antenna modeling"

Misconceptions About Waves

Journal of Scientific Exploration, Vol. 16, No. 3, pp. 359-362, 2002

0892-3310/02

Can Longitudinal Electromagnetic Waves Exist?

GERHARD W. BRUHN

Darmstadt University of Technology, Department of Mathematics, Darmstadt, Germany e-mail: bruhn@mathematik.tu-darmstadt.de

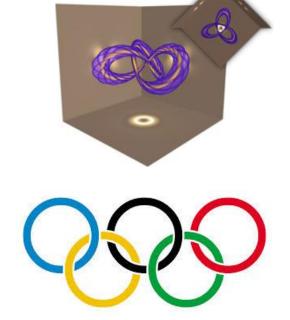
Abstract—In discussions on electro smog K. Meyl has proposed to consider the "dangerous" scalar waves (1) in addition to Hertzian waves. But we have already shown in a previous paper (2) that, indeed, Meyl's scalar waves cannot cause any harm, to anybody—since *they do not exist*. Some readers have interpreted Meyl's scalar waves to be identical with longitudinal electromagnetic waves, but this is not clear due to Meyl's inconsistencies; e.g., his splitting the wave equation is erroneous. Therefore, to calm down our worried readers, below we shall prove that longitudinal electromagnetic waves are harmless as well by recalling a well-known classical result: Plane longitudinal electromagnetic waves *do not exist*. We supplement this by showing that longitudinal spherical electromagnetic waves have the same pleasant property: *They don't exist*.

Keywords: electromagnetism

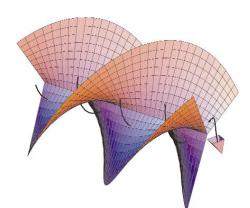
"In case the medium is nondispersive, u (group velocity) coincides with the phase velocity v, but otherwise is a function of the wave number k_0

The group velocity *u* differs from the phase velocity only in dispersive media."

[J.A. Stratton, pp. 332, 339]


"In a nondispersive medium, the phase and group velocities are equal."

[J.G. Van Bladel, p. 830]


Three Kinds of Localized Waves

Knotted waves

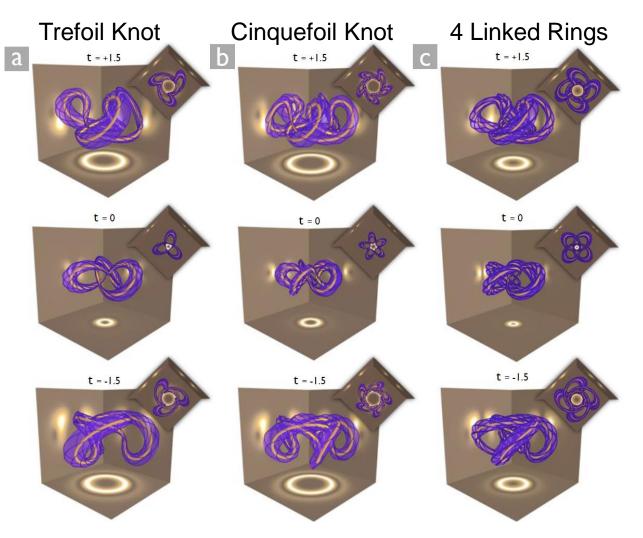
Linked waves

Vortex waves

Weird Waves from Maxwell's Equations

Harry Bateman, 1882 - 1946

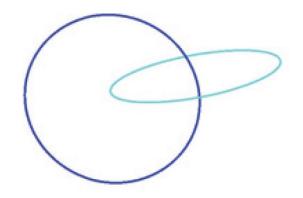
17

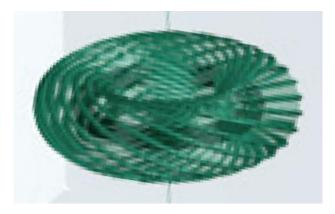

PARTIAL DIFFERENTIAL EQUATIONS ^{OF} MATHEMATICAL PHYSICS

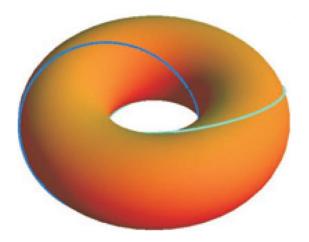
HARRY BATEMAN

CAMBRIDGE UNIVERSITY PRESS

- Knotted waves and linked waves are obtained by using Bateman's (forgotten) method to solve Maxwell's equations
- Bateman's solutions were rediscovered in fluid dynamics

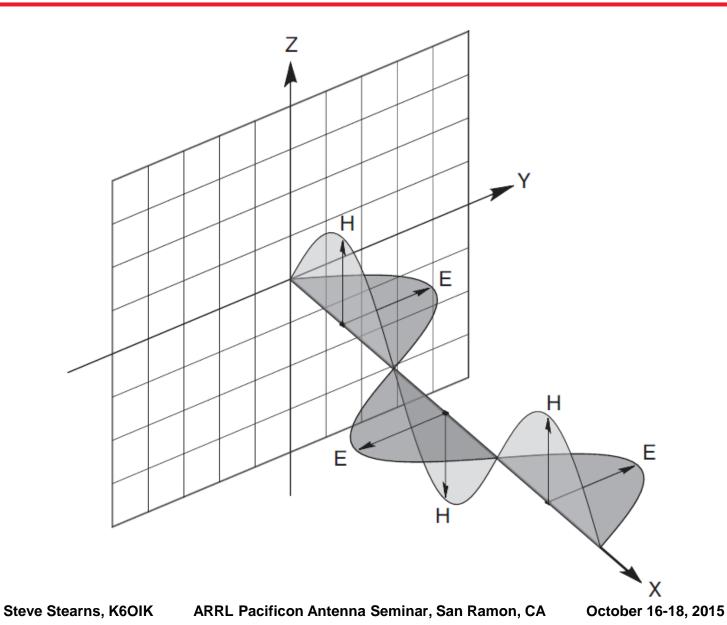

Knotted Waves




H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W.T.M. Irvine, "Tying Knots in Light Fields," *arXiv* 1302.0342v1, Feb. 2013, and *Physical Review Letters*, vol. 111, no. 15, Oct. 10, 2013

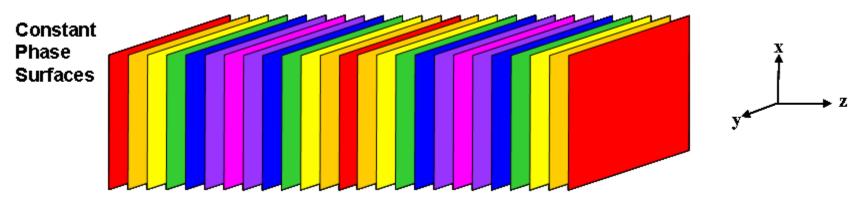
Linked Waves – Hopf Fibrations

- Hopf fibrations are made of linked "unknots" or circles
- Two circles nested on a torus as shown here are linked
- Mutually linked circles fill the torus

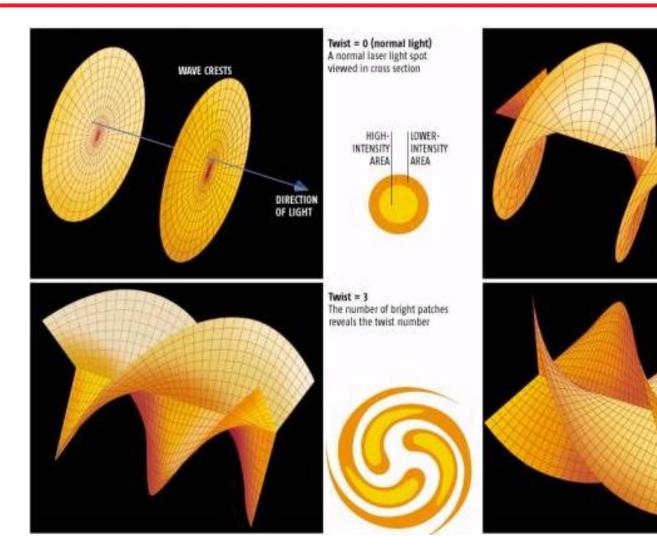

W.T.M. Irvine and D. Bouwmeester, "Linked and Knotted Beams of Light," Nature Physics, Sept. 2008

Electromagnetic Behavior

- Bateman's solutions provide mutually perpendicular "dual" fields having fixed amplitude ratio (wave impedance)
- The Poynting vector forms a closed loop, i.e. traces the knot ad infinitum; energy flow follows the knot
- If the knot drift velocity is zero, energy remains confined and spatially localized; the wave propagates locally only
- Some knotted wave solutions are perturbationally stable through time and in space
- Ordinary concepts of "near field" and "far field" do not apply


Electromagnetic Vortex Waves

Simple Wave Propagation


Uniform Transverse Electromagnetic (TEM) Plane Waves

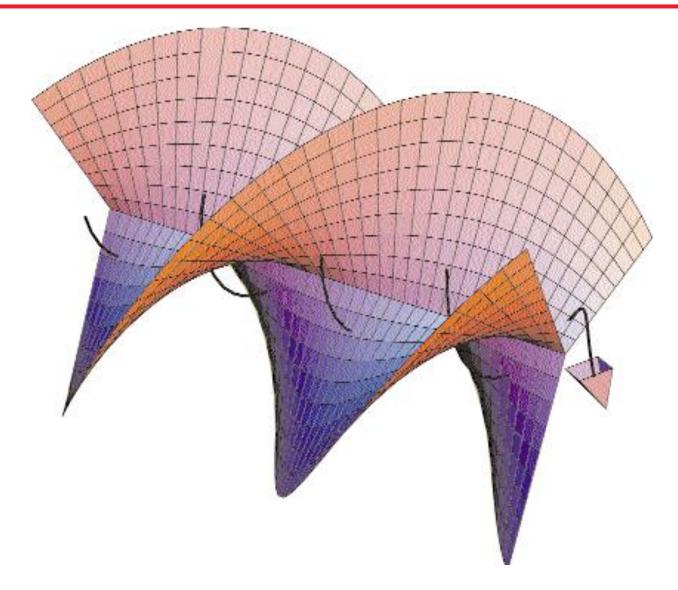
 "A uniform plane wave is a wave, which does not depend on two of the three spatial coordinates in a Cartesian system"

- We frequently assume far field radiation is uniform TEM plane waves
- But other kinds of waves can satisfy the wave equation and propagate in free space

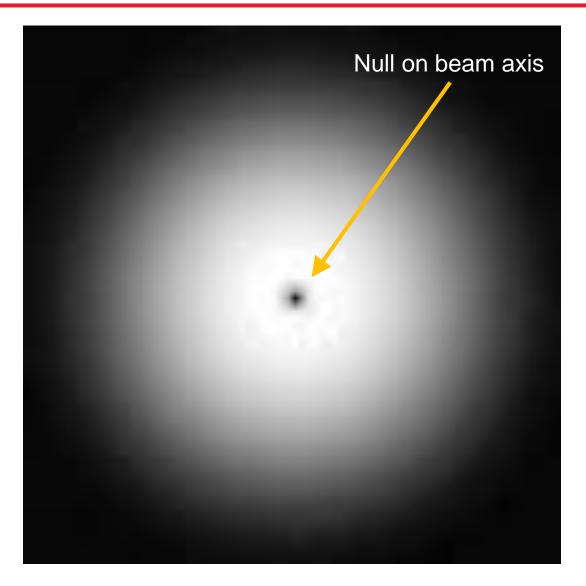
Vortex Beam Phase Surfaces

Twist = 1 A single corkscrew beam has a spiral-shaped cross section

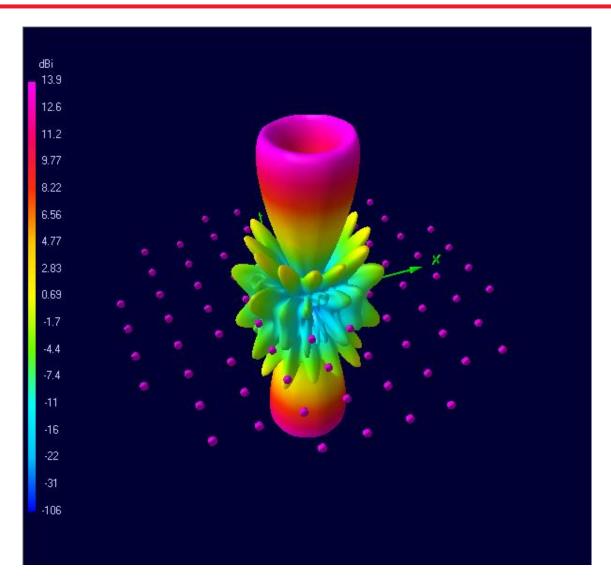
Twist = -4 Light can be given a left or right-hand twist. Here it is right-handed

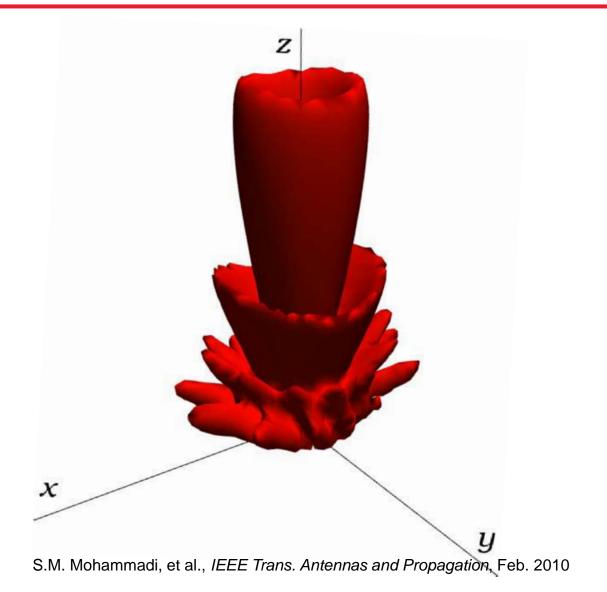


S. Battersby, "Twisting the Light Away," New Scientist, June 12, 2004


24

ARRL Pacificon Antenna Seminar, San Ramon, CA


m = 3 Helicoidal Phase Surface


Intensity of a Vortex Wave – Viewed on Axis

m = 2 Vortex, Pattern of 80-Element 3λ Array

m = 1 Vortex, Pattern of 12-Element 4λ CDAA

Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 16-18, 2015

Fields in Terms of Vector Potentials

 In charge-free space, the electric and magnetic fields are a superposition of terms due to electric and magnetic potentials

$$\boldsymbol{E} = \boldsymbol{E}_{A} + \boldsymbol{E}_{F} = -j\omega\boldsymbol{A} - j\frac{1}{\omega\mu\varepsilon}\nabla(\nabla \bullet \boldsymbol{A}) - \frac{1}{\varepsilon}\nabla \times \boldsymbol{F}$$
$$\boldsymbol{H} = \boldsymbol{H}_{A} + \boldsymbol{H}_{F} = \frac{1}{\mu}\nabla \times \boldsymbol{A} - j\omega\boldsymbol{F} - j\frac{1}{\omega\mu\varepsilon}\nabla(\nabla \bullet \boldsymbol{F})$$

- Our interest is in collimated, non-diffracting TE^z and TM^z vortex waves traveling in the *z*-axis (axial) direction
- Collimated, non-diffracting beams are derived as field solutions to the wave equation in cylindrical coordinates

C.A.Balanis, Advanced Engineering Electromagnetics, Wiley

Fields are Derivatives of Potentials (Calculus ugh!)

$$\begin{split} E_{\rho} &= -j\omega A_{\rho} - j\frac{1}{\omega\mu\varepsilon}\frac{\partial}{\partial\rho}\bigg[\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho A_{\rho}) + \frac{1}{\rho}\frac{\partial A_{\phi}}{\partial\phi} + \frac{\partial A_{z}}{\partial z}\bigg] - \frac{1}{\varepsilon}\bigg(\frac{1}{\rho}\frac{\partial F_{z}}{\partial\phi} - \frac{\partial F_{\phi}}{\partial z}\bigg) \\ E_{\phi} &= -j\omega A_{\phi} - j\frac{1}{\omega\mu\varepsilon}\frac{1}{\rho}\frac{\partial}{\partial\phi}\bigg[\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho A_{\rho}) + \frac{1}{\rho}\frac{\partial A_{\phi}}{\partial\phi} + \frac{\partial A_{z}}{\partial z}\bigg] - \frac{1}{\varepsilon}\bigg(\frac{\partial F_{\rho}}{\partial z} - \frac{\partial F_{z}}{\partial\rho}\bigg) \\ \hline Zero \text{ for } \mathsf{TE}^{z} \\ E_{z} &= -j\omega A_{z} - j\frac{1}{\omega\mu\varepsilon}\frac{\partial}{\partial z}\bigg[\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho A_{\rho}) + \frac{1}{\rho}\frac{\partial A_{\phi}}{\partial\phi} + \frac{\partial A_{z}}{\partial z}\bigg] - \frac{1}{\varepsilon}\frac{1}{\rho}\bigg(\frac{\partial}{\partial\rho}(\rho F_{\phi}) - \frac{\partial F_{\rho}}{\partial\phi}\bigg) \\ H_{\rho} &= -j\omega F_{\rho} - j\frac{1}{\omega\mu\varepsilon}\frac{\partial}{\partial\rho}\bigg[\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho F_{\rho}) + \frac{1}{\rho}\frac{\partial F_{\phi}}{\partial\phi} + \frac{\partial F_{z}}{\partial z}\bigg] + \frac{1}{\mu}\bigg(\frac{1}{\rho}\frac{\partial A_{z}}{\partial\phi} - \frac{\partial A_{\phi}}{\partial z}\bigg) \\ H_{\phi} &= -j\omega F_{\phi} - j\frac{1}{\omega\mu\varepsilon}\frac{1}{\rho}\frac{\partial}{\partial\phi}\bigg[\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho F_{\rho}) + \frac{1}{\rho}\frac{\partial F_{\phi}}{\partial\phi} + \frac{\partial F_{z}}{\partial z}\bigg] + \frac{1}{\mu}\bigg(\frac{\partial A_{\rho}}{\partial\phi} - \frac{\partial A_{z}}{\partial\rho}\bigg) \\ \hline Zero \text{ for } \mathsf{TM}^{2} \\ H_{z} &= -j\omega F_{z} - j\frac{1}{\omega\mu\varepsilon}\frac{\partial}{\partial z}\bigg[\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho F_{\rho}) + \frac{1}{\rho}\frac{\partial F_{\phi}}{\partial\phi} + \frac{\partial F_{z}}{\partial z}\bigg] + \frac{1}{\mu}\frac{1}{\rho}\bigg(\frac{\partial}{\partial\rho}(\rho A_{\phi}) - \frac{\partial A_{\rho}}{\partial\phi}\bigg) \end{split}$$

TE^z Wave Solution

 Transverse electric (TE^z) waves traveling in the z direction are described by

$$\mathbf{A} = 0$$
 and $\mathbf{F} = \mathbf{a}_z F_z(\rho, \phi, z)$

Wave equation for electric vector potential

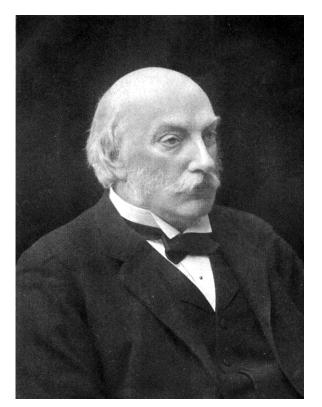
$$\nabla^2 F_z(\rho,\phi,z) + \beta^2 F_z(\rho,\phi,z) = 0$$

$$\frac{\partial^2 F_z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial F_z}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 F_z}{\partial \phi^2} + \frac{\partial^2 F_z}{\partial z^2} + \beta^2 F_z = 0$$

Solution by separation of variables

 $F_{z}(\rho,\phi,z) = \left[C_{1}J_{m}(\beta_{\rho}\rho) + D_{1}Y_{m}(\beta_{\rho}\rho)\right] \times \left[C_{2}e^{-jm\phi} + D_{2}e^{jm\phi}\right] \times \left[C_{3}e^{-j\beta_{z}z} + D_{3}e^{j\beta_{z}z}\right]$

• Specific solution for vortex wave traveling in *z* direction with phase advancing in ϕ direction $F_z(\rho, \phi, z) = C J_m(\beta_\rho \rho) e^{-j(m\phi + \beta_z z)}$


TE^z Vortex Fields

$$\begin{split} E_{\rho} &= -\frac{1}{\varepsilon} \frac{\partial F_{z}}{\partial \phi} &= j \frac{C\eta \omega m}{\beta \rho} J_{m}(\beta_{\rho}\rho) e^{-j(m\phi + \beta_{z}z)} \\ E_{\phi} &= \frac{1}{\varepsilon} \frac{\partial F_{z}}{\partial \rho} &= \frac{C\eta \omega \beta_{\rho}}{\beta} J'_{m}(\beta_{\rho}\rho) e^{-j(m\phi + \beta_{z}z)} \\ E_{z} &= 0 &= 0 \\ H_{\rho} &= -j \frac{1}{\omega \mu \varepsilon} \frac{\partial^{2}}{\partial \rho \partial z} F_{z} &= -\frac{C\omega \beta_{\rho} \beta_{z}}{\beta^{2}} J'_{m}(\beta_{\rho}\rho) e^{-j(m\phi + \beta_{z}z)} \\ H_{\phi} &= -j \frac{1}{\omega \mu \varepsilon \rho} \frac{\partial^{2}}{\partial \phi \partial z} F_{z} &= j \frac{C\omega m \beta_{z}}{\beta^{2} \rho} J_{m}(\beta_{\rho}\rho) e^{-j(m\phi + \beta_{z}z)} \\ H_{z} &= -j \frac{1}{\omega \mu \varepsilon} \left(\frac{\partial^{2}}{\partial z^{2}} + \beta^{2} \right) F_{z} &= -j \frac{C\beta_{\rho}^{2}}{\beta^{2}} J_{m}(\beta_{\rho}\rho) e^{-j(m\phi + \beta_{z}z)} \end{split}$$

TM^z Vortex Fields

$$\begin{split} E_{\rho} &= -j \frac{1}{\omega \mu \varepsilon} \frac{\partial^{2}}{\partial \rho \partial z} A_{z} &= -\frac{A \omega \beta_{\rho} \beta_{z}}{\beta^{2}} J'_{m}(\beta_{\rho} \rho) e^{-j(m\phi + \beta_{z} z)} \\ E_{\phi} &= -j \frac{1}{\omega \mu \varepsilon \rho} \frac{\partial^{2}}{\partial \phi \partial z} A_{z} &= j \frac{A \omega m \beta_{z}}{\beta^{2} \rho} J_{m}(\beta_{\rho} \rho) e^{-j(m\phi + \beta_{z} z)} \\ E_{z} &= -j \frac{1}{\omega \mu \varepsilon} \left(\frac{\partial^{2}}{\partial z^{2}} + \beta^{2} \right) A_{z} &= -j \frac{A \beta_{\rho}^{2}}{\beta^{2}} J_{m}(\beta_{\rho} \rho) e^{-j(m\phi + \beta_{z} z)} \\ H_{\rho} &= \frac{1}{\mu \rho} \frac{\partial A_{z}}{\partial \phi} &= -j \frac{A \omega m}{\eta \beta \rho} J_{m}(\beta_{\rho} \rho) e^{-j(m\phi + \beta_{z} z)} \\ H_{\phi} &= -\frac{1}{\mu} \frac{\partial A_{z}}{\partial \rho} &= -\frac{A \omega \beta_{\rho}}{\eta \beta} J'_{m}(\beta_{\rho} \rho) e^{-j(m\phi + \beta_{z} z)} \\ H_{z} &= 0 &= 0 \end{split}$$

Lord Rayleigh Circular Waveguide Solution 1897

Lord Rayleigh John William Strutt 1842 - 1919

XVIII. On the Passage of Electric Waves through Tubes, or the Vibrations of Dielectric Cylinders. By Lord RAYLEIGH, F.R.S.*

General Analytical Investigation.

THE problem here proposed bears affinity to that of the vibrations of a cylindrical with the vibrations of a cylindrical solid treated by Pochhammer † and others, but when the bounding conductor is

> * Communicated by the Author. † Crelle, vol. xxxi. 1876.

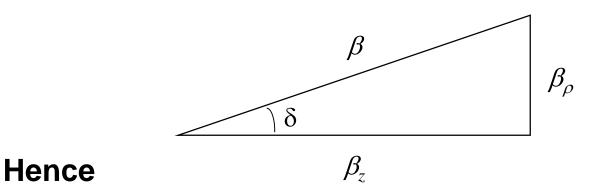
Phil. Mag. S. 5. Vol. 43. No. 261. Feb. 1897. L

Wave Impedances

TE^z

$$\frac{E_{\rho}}{H_{\phi}} = \frac{-E_{\phi}}{H_{\rho}} = \eta \frac{\beta}{\beta_z} = \frac{\eta}{\cos \delta}$$

TM^z


$$\frac{E_{\rho}}{H_{\phi}} = \frac{-E_{\phi}}{H_{\rho}} = \eta \frac{\beta_z}{\beta} = \eta \cos \delta$$

Relationships Among Phase Constants

The radial and axial phase constants satisfy

$$\beta_{\rho}^2 + \beta_z^2 = \beta^2 = \frac{\omega^2}{c^2}$$

Right triangle relation

$$\beta_{\rho} = \beta \sin \delta$$
 and $\beta_{z} = \beta \cos \delta$
 $\tan \delta = \frac{\beta_{\rho}}{\beta_{z}}$

ARRL Pacificon Antenna Seminar, San Ramon, CA

Guided versus Free-Space Wave Solutions

Circular waveguide modes

- TEM^z mode does not exist
- Vortex modes do not exist
- TE^z and TM^z non-vortex modes exist that satisfy Dirichlet or Neumann boundary conditions
- > Mode parameter δ assumes discrete values
- Modes form a countable set

Free space vortex modes

- > TEM^z mode exists $\Rightarrow m = 0$
- ▶ TE^z and TM^z vortex modes exist $\Rightarrow m \ge 1$
- Mode cutoff frequency phenomenon is absent
- > Modes parameterized by m and δ are nondenumerable

Axial Phase Velocity and Wavelength

Axial phase velocity

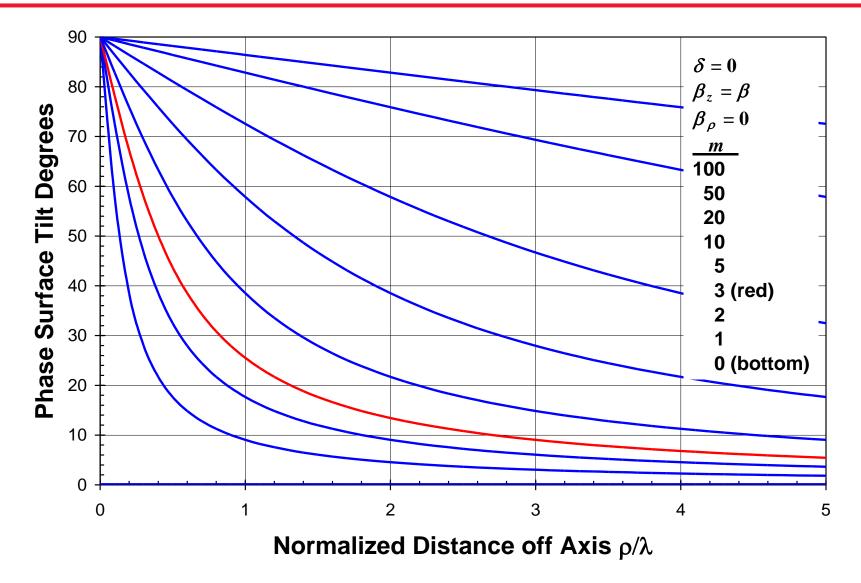
$$v_{phase} = \frac{\omega}{\beta_z} = \frac{\omega}{\beta \cos \delta} = \frac{c}{\cos \delta} > c$$

• Axial wavelength

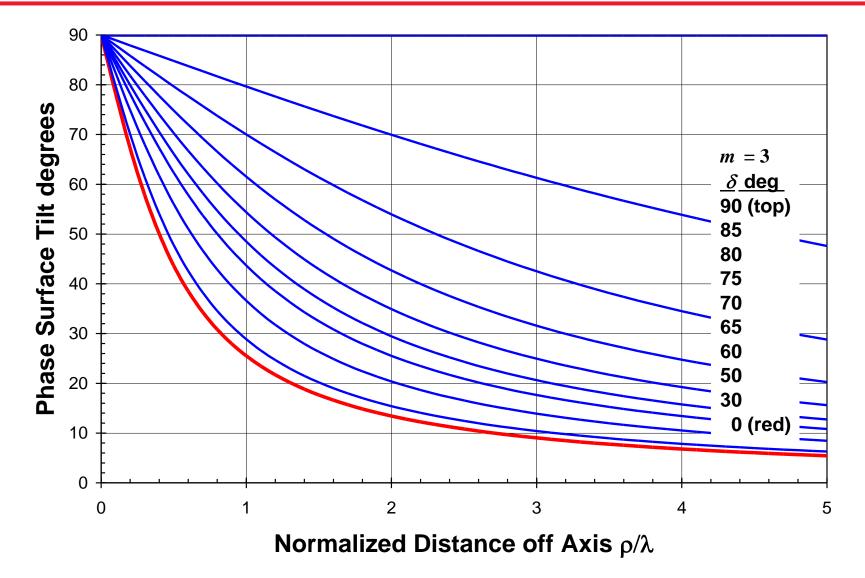
$$\lambda_z = \frac{2\pi}{\beta_z} = \frac{2\pi}{\beta \cos \delta} = \frac{\lambda_{free \ space}}{\cos \delta} > \lambda_{free \ space}$$

S.D. Stearns, "More Unusual Features of the Microwave Vortex," IEEE APS-URSI, July 2012

Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 16-18, 2015


 Phase surface tilt varies as a function of position according to

Tilt Angle =
$$\cos^{-1} \gamma_z = \cos^{-1} \frac{\frac{\rho}{\lambda}}{\sqrt{\left(\frac{\rho}{\lambda}\right)^2 + \left(\frac{m}{2\pi\cos\delta}\right)^2}}$$


- Phase tilt depends on three variables
 - > Distance off axis ρ

- Mode number (topological charge) m
- > Phase constant ratio β_{ρ}/β_z or angle δ

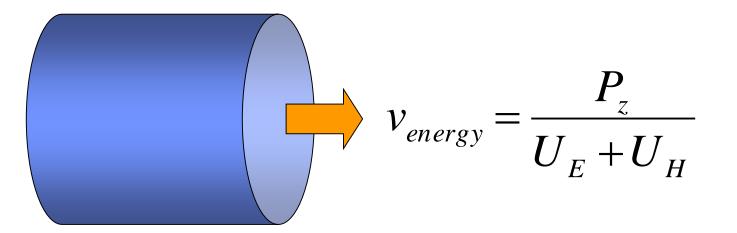
Phase Surface Tilt Angle from z Axis

Phase Surface Tilt Angle, m = 3

Polarization Varies Across the Wavefront

- The polarization of a Bessel mode varies from point to point in the transverse plane
- Polarization depends on distance off axis
- TE^z modes
 - > Linearly polarized in the ϕ direction at radial distances corresponding to the zeros of $J_m(\beta_\rho \rho)$
 - > Linearly polarized in the ρ direction at radial distances corresponding to the zeros of $J'_m(\beta_\rho \rho)$
- TM^z modes
 - > Linearly polarized in the ρ direction at radial distances corresponding to the zeros of $J_m(\beta_{\rho}\rho)$
 - > Linearly polarized in the ϕ direction at radial distances corresponding to the zeros of $J'_m(\beta_\rho \rho)$
- Between rings, the polarization transitions through elliptical polarizations with varying axial ratio

Poynting Vector, Power Flow, and Momentum


$$\mathbf{S}_{TE^{z}} = \mathbf{a}_{\rho} j \left(\frac{C^{2} \eta \omega \beta_{\rho}^{3}}{2\beta^{3}} \right) J_{m}^{\prime}(\beta_{\rho}\rho) J_{m}(\beta_{\rho}\rho) + \mathbf{a}_{\phi} \left(\frac{C^{2} \eta \omega \beta_{\rho}^{2} m}{2\beta^{3}\rho} \right) J_{m}^{2}(\beta_{\rho}\rho) + \mathbf{a}_{z} \frac{C^{2} \eta \omega^{2} \beta_{z}}{2\beta} \left\{ \left(\frac{\beta_{\rho}}{\beta} \right)^{2} J_{m}^{\prime 2}(\beta_{\rho}\rho) + \left(\frac{m}{\beta\rho} \right)^{2} J_{m}^{2}(\beta_{\rho}\rho) \right\}$$

$$\mathbf{S}_{TM^{z}} = \mathbf{a}_{\rho} \, j \left(\frac{-A^{2} \omega \beta_{\rho}^{3}}{2\eta \beta^{3}} \right) J_{m}'(\beta_{\rho} \rho) \, J_{m}(\beta_{\rho} \rho) \, + \, \mathbf{a}_{\phi} \left(\frac{A^{2} \omega \beta_{\rho}^{2} m}{2\eta \beta^{3} \rho} \right) J_{m}^{2}(\beta_{\rho} \rho) \, + \, \mathbf{a}_{z} \, \frac{A^{2} \omega^{2} \beta_{z}}{2\eta \beta} \left\{ \left(\frac{\beta_{\rho}}{\beta} \right)^{2} J_{m}'^{2}(\beta_{\rho} \rho) \, + \left(\frac{m}{\beta \rho} \right)^{2} J_{m}^{2}(\beta_{\rho} \rho) \right\}$$

- Real power and linear momentum have axial and azimuthal components
- Radial power is reactive and represents stored energy with direction along any radial, alternately in and out as the sign of J'_m J_m
- For given *m*, a combination of TE^z plus TM^z exists, viz. $A/C = \eta$, that has no radial power nor stored field energy
- Real power spirals through space around the vortex axis, CW or CCW according to the sign of m

Wavefront Energy Velocity

- Determined by the rate of total energy crossing a transverse plane or "port"
- The energy or momentum velocity is given by the ratio of real Poynting flux to real energy density per unit length, both defined over a transverse plane

Energy Velocity is Subluminal

45

ARRL Pacificon Antenna Seminar, San Ramon, CA

OAM-Multiplexed Communication Demo

- Public demonstration in Venice, Italy, July 24, 2011
- Organized by Prof. F. Tamburini, University of Bologna, and Prof. Bo Thidé, Uppsala University
- Attended by Princess Elettra Marconi, relative of Gugielmo Marconi, and more than 2,000 spectators
- Simultaneous transmission of two signals on 2.414 GHz
- Colocated transmitters and receivers
- Signal 1 used Yagi antennas for Tx and Rx
- Signal 2 used spiral-ramp reflector antennas for OAM Tx and Rx
- Both signals were received without interference
- Debate between communication theorists and physicists as to the proper explanation of the result; both sides missed important points

OAM reflector antenna

Ionospheric Heater Experiments

HAARP, Gakona, Alaska

- U.S. Navy
- HF: 2.8 to 10 MHz, often 3.39 and 6.99 MHz
- HIPAS, Fairbanks, Alaska
 - VCLA
 - HF: 2.85 and 4.53 MHz
- EISCAT, Ramfjordmoen near Tromsø, Norway
 - Norway, Sweden, Finland, Japan, China, UK, and Germany
 - VHF/UHF: 224, 500 and 931 MHz
- Sura, Vasilsursk, Russia
 - HF: 4.5 to 9.3 MHz
- Arecibo, Puerto Rico
 - NSF and Cornell Univ.
 - HF: 5.1 and 8.175 MHz

The Norway spiral, Dec. 9, 2009

Summary of Vortex Bessel Modes

- Vortex Bessel modes satisfy Maxwell's equations and the wave equation exactly – no paraxial approximation
- Differences from circular waveguide modes
 - > No metal wall boundary condition \Rightarrow no cutoff phenomenon
 - Modes are indexed by two parameters, one integer and one real number
- Constant-phase surfaces are multi-sheet helicoids
- Phase surface tilt depends on mode parameters and distance off axis
- Polarization varies across the wavefront
- Wavelength is dilated

48

- Phase velocity of the wave is superluminal (greater than c)
- Energy velocity varies across the wavefront but is everywhere subluminal (less than c)
- All energy velocities between 0 and c are achievable by choosing mode parameter δ
- c becomes an upper bound on the speed of electromagnetic waves in free space

How can light travel slower than the speed of light?

Final Comments

- Electromagnetic radiation can have either spin or orbital angular momentum (SAM or OAM)
- Photons have SAM or OAM
- Wave fields have SAM or OAM density

Wave behavior ≠ Photon behavior

- According to Einstein, photons travel at speed c, period!
- Waves can travel at speeds less than c if photons travel on curved paths
- Photons having OAM apparently travel on curved paths
- Localized waves, such as knotted, linked, and vortex waves, depend on OAM for their weird properties

Understanding photon entanglement may explain the mystery.

So What?

- What are localized waves good for, and how do you make them?
- Research world wide is focused on how to make localized waves
 - Spiral ramp reflector antenna (Italian communications demo)
 - Phased arrays (HAARP)
 - Metasurface reflector antennas
 - Optical gratings and lenses

Applications

- Manufacturing Optical tweezers for moving, twisting atoms, molecules and nano objects
- Communications Increased communication capacity of free space for point-topoint communications (xm instead of x2 for polarization multiplexing)
- Military Communication and radar ECM countermeasures
- Energy storage Electromagnetic flywheel using knotted waves
- Astrophysics If knotted or linked localized waves exist in space as local circulating energy, they would be invisible (dark) and have mass dark matter?
- Amateur Radio Curved propagation path communication for DX and NVIS without ionosphere or tropo ducts

Caveat

- OAM is a nuisance to laser designers, who design filters to remove it
- Otherwise, a laser ruler might measure distance wrong!

Further Reading

- S.D. Stearns, "Transverse and Longitudinal Structure of Bessel Vortex Beam Solutions to Maxwell's Equations," *IEEE International Symposium on Antennas and Propagation*, July 2014
- S.D. Stearns, "More Unusual Features of the Microwave Vortex," IEEE International Symposium on Antennas and Propagation, July 2012
- H. Kedia, et al, "Tying Knots in Light Fields," arXiv 1302.0342v1, Feb. 2013
- W.T.M. Irvine, "Linked and Knotted Beams of Light, Conservation of Helicity and the Flow of Null Electromagnetic Fields," *arXiv* 1110.5408v1, Oct. 2011
- W.T.M. Irvine and D. Bouwmeester, "Linked and Knotted Beams of Light," *Nature Physics*, Aug. 2008

The End

This presentation and revisions will be archived at

http://www.fars.k6ya.org