VHF/UHF Propagation Planning for Amateur Radio Repeaters

Steve Stearns, K6OIK

Consulting Engineer Radio Frequency and Wireless Systems Antennas, Circuits, Systems <u>k6oik@arrl.net</u> <u>stearns@ieee.org</u>

Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017

1

Speaker's Biography

- Stephen D. Stearns
- Technical Fellow, ret., Northrop Grumman Corp.
- 40 years experience in electronic systems
 - Northrop Grumman, TRW, GTE Sylvania, Hughes Aircraft
 - Electromagnetic and signal processing systems for communications and radar surveillance, cochannel signal separation, measurement, identification, characterization, polarimetric array signal processing of ionospheric skywave signals for precision geolocating HF emitters
 - Recent work: Vector-sensor antennas; Non-Foster circuits; antennas for radiating localized, non-diffracting, OAM Bessel-Vortex beams
- FCC licenses
 - Amateur Radio Extra Class
 - > 1st-Class Radiotelephone
 - General Radio Operator License (GROL)
 - Ship Radar Endorsement
- Education
 - Stanford under Prof. T.M. Cover
 - USC under Profs. H.H. Kuehl and C.L. Weber
 - CSUF under Profs. J.E. Kemmerly and G.I. Cohn
- More than 100 publications and presentations, both professional (IEEE) and hobbyist (Amateur Radio)

Abstract

Terrestrial radio, TV, cellular, and wireless systems are not "line-of-sight" despite what you've heard. Otherwise, your HT and smart phone would not work indoors, and your WiFi router signal would not reach other rooms.

Today, powerful computer programs are used universally to design such systems. The hard part of the calculation is to determine RF path loss while properly accounting for reflection, refraction, diffraction, and shadowing effects.

One algorithm, the Longley-Rice algorithm, was developed to specifically model radio propagation over irregular terrain. This algorithm became the basis for the government's Irregular Terrain Model (ITM) software, which, in turn, was adopted by the FCC as the approved method for computing service contours and interference between fixed stations.

We review propagation theory, prediction algorithms, and show how to compute the two-way service contours of repeaters for high-reliability communication and for mountain top DX fun.

Topics

Introduction

Propagation mechanisms at VHF/UHF

- Reflection, refraction, diffraction, shadowing, scattering
- Algorithms and techniques for link, system, and cell planning

Free software for Radio Amateurs

 Link analysis versus coverage analysis (service contours and cell boundaries)

Example: SPECS repeaters

- Coverage analysis for 2-meter, 1.25-meter, and 70-cm machines
- High reliability "assured" coverage for primary mission
- Lower reliability coverage for long-range DX fun

Introduction

Questions

- Does light travel on straight lines?
- Do radio waves travel on straight lines?
- Do VHF and UHF radio waves travel on straight lines?
- Do VHF and UHF communications need Line-of-Sight (LOS) paths?

FEKO Featured in QST, October 2016

Near Fields of a Mobile Mounted 2 Meter Antenna

The author uses FEKO, a patch-based computational software package, to reveal EM fields around a vehicle.

Keith Snyder, KI6BDR

FEKO is a computational electromagnetic (CEM) tool that I used to calculate the antenna pattern of a 2 meter antenna located on the center of the roof of a sedan-type automobile. FEKO computer code can calculate the electromagnetic fields both inside and outside the vehicle. I show images of the near fields around the vehicle.

Many radio amateurs are familiar with modern NEC-based computer software like EZNEC and 4nec2 used to calculate the fields of wire antennas and wire structures in the presence of a ground,1,2,3 These computer software codes facilitate antenna analysis as a function of frequency, antenna height above ground, along with antenna patterns in presence of wire models of structures. The FEKO computer code is similar in that, like the NEC codes, it uses the method of moments (MOM) and the Sommerfeld ground capabilities.

FEKO Software

FEKO uses triangular patches in the models so that we can represent arbitrary shapes such as the metal skin of an automobile or aircraft. FEKO stands for "feldberechnung für körper mit beliebiger oberfläche." which translates from German to "field calculations for arbitrarily shaped structures."4

I first encountered FEKO at the Applied Computational Electromagnetics Society meeting in Monterey, California in 2003. I met Dr C. J. Reddy, who helped me model a rolled-edge discone antenna. Later, I met Dr. Ulrich Jakobus, who wrote the code as part of his research activities at the University of Stuttgart in 1991. Capabilities of FEKO software include

Figure 1 - Triangular patch model of a car includes a 19-inch wire antenna on the roof.

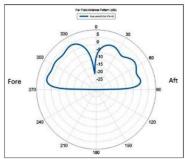


Figure 2 — Elevation pattern for a quarter-wave antenna on car at 147 MHz.

Finite Element Method (FEM), Method of Moments (MOM), Multi-Level Fast Multipole Method (MLFMM), Physical Optics/Geometrical Optics (PO/GO), and UTD (Uniform Theory of Diffraction).5

Steve Stearns, K6OIK, in a presentation to the Foothill Amateur Radio Society, has compared several CEM tools including a

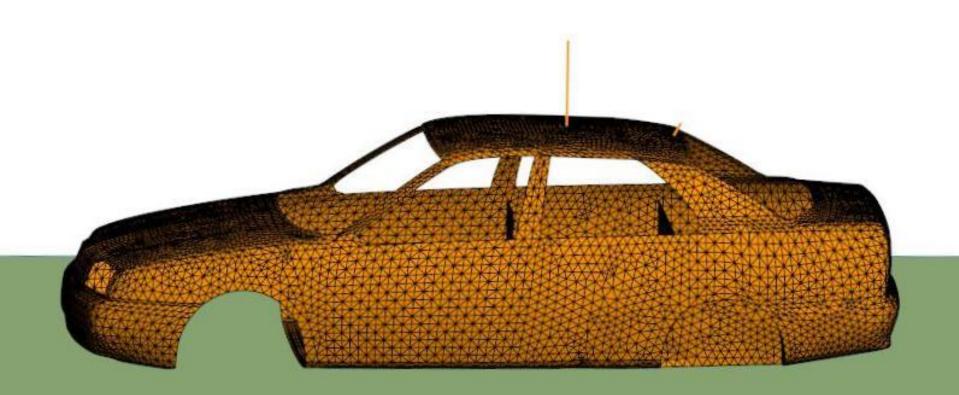
QST²-Devoted entirely to Amateur Radio www.arrl.org October 2016 33

few of the NEC software packages, along with FEKO.6

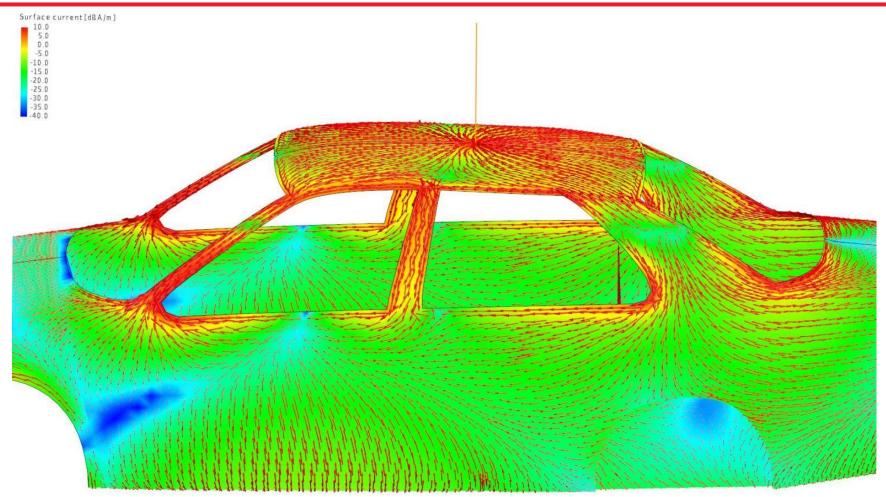
The Vehicle Model

I found a generic car model on the FEKO software web page that is already meshed with simple triangle patches. I modeled a quarter-wave monopole antenna on the roof to see the near and far fields at 147 MHz. The 19-inchtall monopole is located near the center of the roof. Figure 1 shows the patch model of a car with the monopole on the roof.

The car model is composed of 21,602 triangles. There are also 31 wire segments used to model the 2 meter monopole and a short antenna on the back of the roof

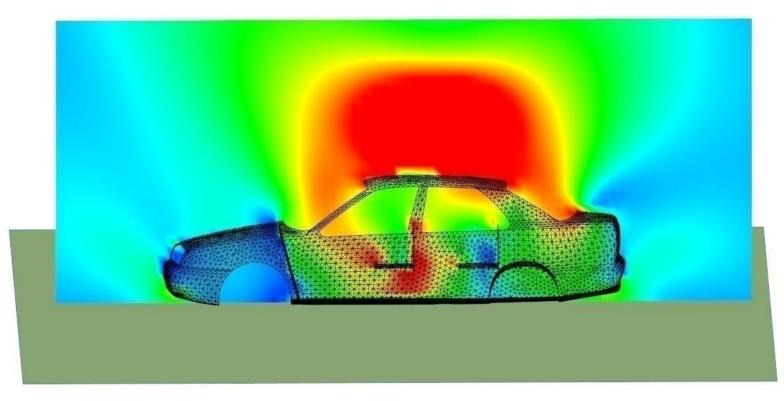

that is treated as a scatterer. The ground constants are a relative permittivity of 10, and conductivity of 0.005 S/m. The green plane under the car in Figure 1 indicates in FEKO that the Sommerfeld ground has been implemented.

The output of the computer code indicates that the antenna is near resonance with an

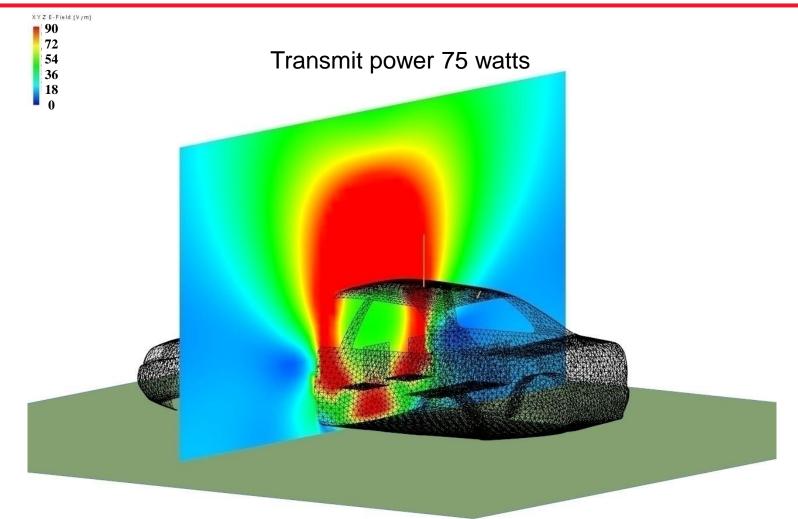

Steve Stearns, K6OIK

Southern Peninsula Emergency Communications System (SPECS)

Car with 2-Meter Monopole on Roof



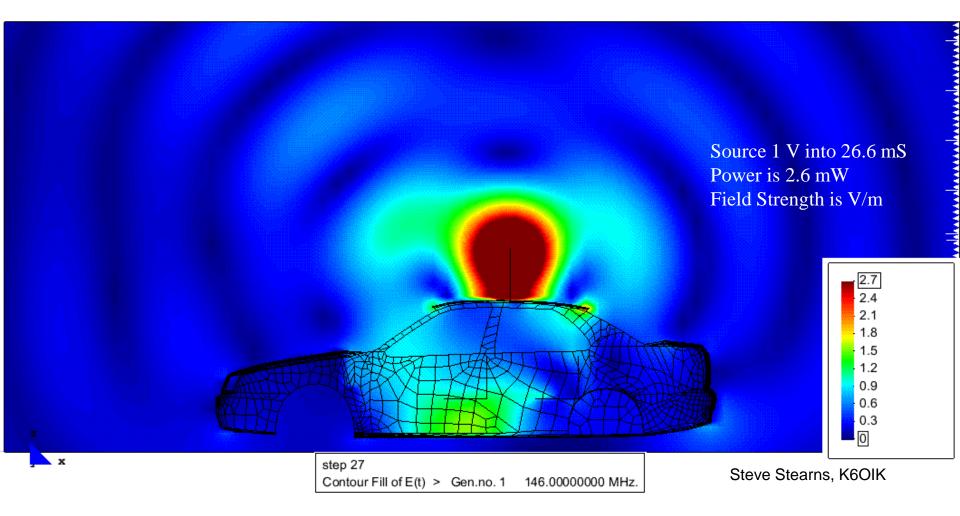
Skin Currents



Electric Field Strength in Longitudinal Plane

(YZE-Field [V/m] 90	
72	Transmit power 75 watts
54	
54 36	
18 0	
0	

Electric Field Strength in Transverse Plane


Quadrilateral Bilinear Surface Mesh

Ground model is turned off. Car is in free space.

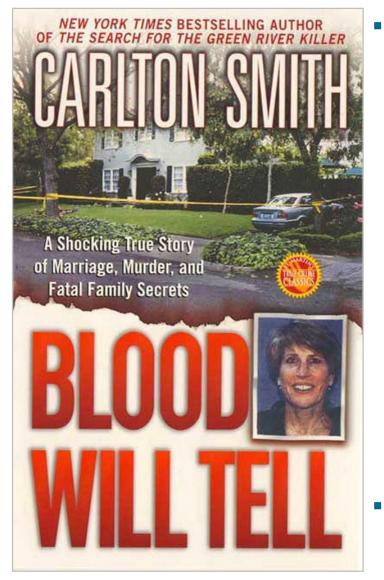
Steve Stearns, K6OIK

12 Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017

|E| Field in Central Plane (y = 0)

View PowerPoint in Slide Show mode (Shift F5) to see field animation.

13 Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017

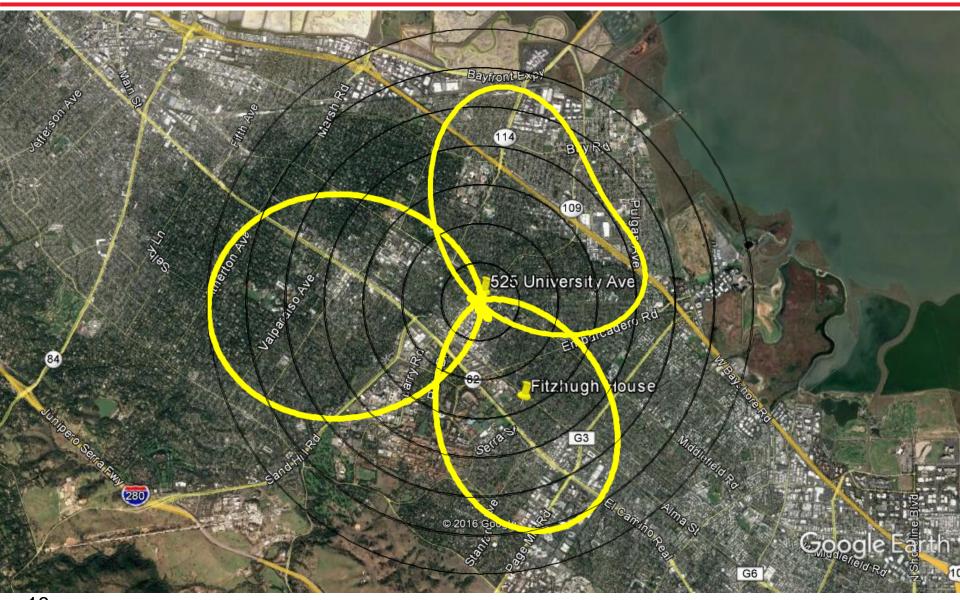

RF propagation lesson

Electromagnetic waves do not always travel Line-of-Sight paths!

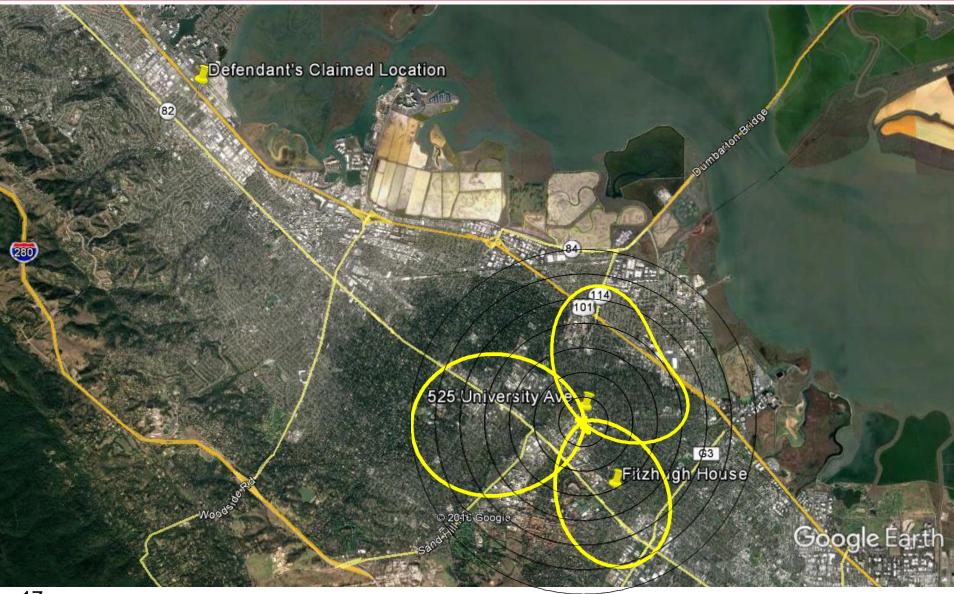
RF safety lesson

Mobile stations running 50 watts or more on 2 meters should do a station evaluation even though it's not required.

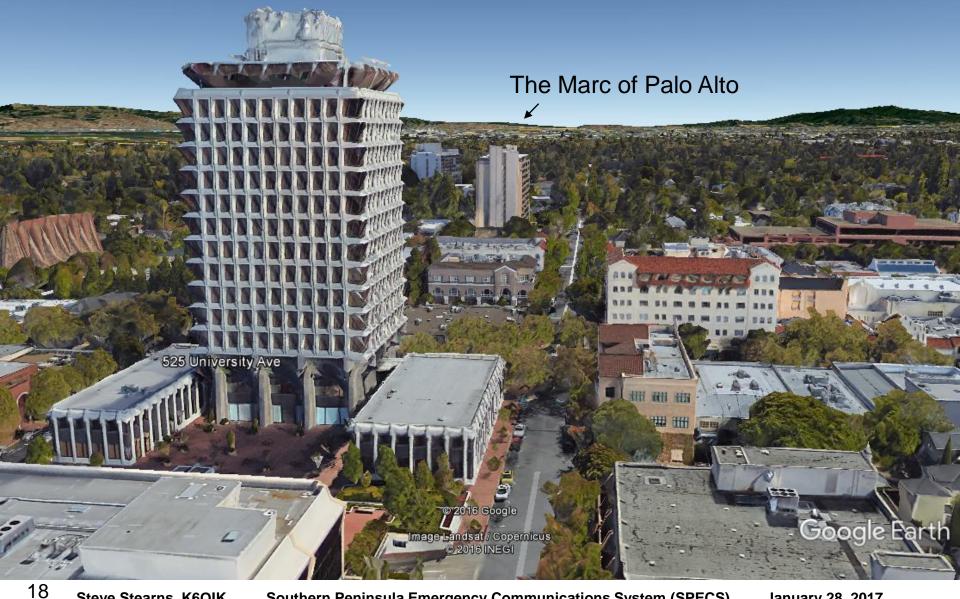
Palo Alto Murder – May 5, 2000



They Were The Perfect Family...


For twenty years, Ken and Kristine Fitzhugh and their two sons had lived lives of comfortable middle-class normality in the university town of Palo Alto, California. Then came the shocking news that Kristine Fitzhugh was dead, the victim of a terrible accident... By the time the Palo Alto Police Department looked closer at the death of Kristine Fitzhugh, there could be only one conclusion. Someone had murdered Kristine in her own home, inflicting a series of horrific blows to the back of her head, and then cleaned up the mess to make it look like an accident. Who would do such a thing? Protesting his innocence, Kenneth Fitzhugh was arrested and tried for the murder of his wife. And as the case progressed, one by one, the hidden secrets of the Fitzhugh family came spilling out. . .

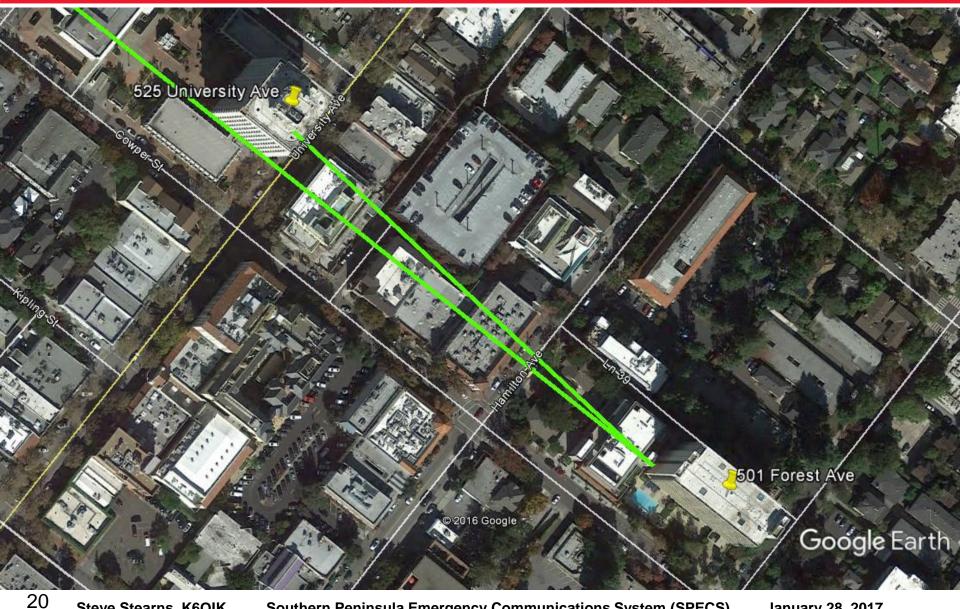
Blood Will Tell is the shocking true story of a seemingly happy family and the deadly secrets that led to murder.


Verizon's Cellular Footprints of Site 167

The Defense's Dilemma

The View Looking Southeast from Site 167

Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017


The View Looking Northwest Toward Site 167

525 University Avenue Verizon Site 167


© 2016 Google Data LDEO=Columbia, NSF NOAA Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBC

Google Earth

Where Would a Reflected Wave Go?

Answer – Along a Section of Highway 101

At Trial

- Verizon Wireless cellular engineers testified for the prosecution that it was impossible for the south facing antenna to service the north side of Site 167
- They testified that a phone on the north side would connect to the Northeast or West facing antennas if a connection were to happen
- Expert Witness for the defense, an authority on RF systems and radio propagation, countered that a reflected path was plausible given analysis of
 - Path geometry
 - Passive reflector's radar cross-section and scattering behavior
 - Orientations of antenna patterns of Site 167
 - Antenna patterns, signal strengths, and cell boundaries of other Verizon base stations on the peninsula
- Expert Witness's drive tests of a phone in diagnostic mode further revealed phones did connect to the south facing antenna from locations north of Site 167
- Prosecutor became visibly angry as the phone evidence part of his theory of the murder collapsed

The Rest of the Story

- The story of the trial was documented in Carlton Smith's book Blood Will Tell, St. Martin's Press, 2003
 - Award-winning journalist for The Los Angeles Times and The Seattle Times in the 1970s and 1980s
 - Finalist for the Pulitzer Prize in investigative reporting in 1988
- Defendant Kenneth Fitzhugh was convicted of seconddegree murder and sentenced to 15 years to life in prison
- The conviction was based on blood evidence, not cell phone evidence
- Kenneth Fitzhugh was paroled in 2012 for medical reasons
- He died eight months later at age 69

VHF and UHF radio signals do not always travel Line-of-Sight paths!

Propagation Mechanisms at VHF and UHF

Reflection

- Hard reflection off large objects buildings, mountains
- Multipath

Refraction

- Atmospheric bending due to temperature/pressure gradients
- Analyzable for parabolic gradients

Diffraction

- Knife edge diffraction (Deygout, Causebrook, Giovaneli, Vogler)
- Wedge diffraction

Shadowing

Blockage behind large objects that isn't filled in by multipath or diffraction

Scattering

- General term for re-radiation from objects large and small
- Depends on material properties and surface irregularity

You do not need a Line-of-Sight path to communicate on VHF or UHF!

Technician Exam Questions

Refraction

- T3C02: Which of the following might be happening when VHF signals are being received from long distances?
 - A. Signals are being reflected from outer space
 - B. Signals are arriving by sub-surface ducting
 - C. Signals are being reflected by lightning storms in your area
 - D. Signals are being refracted from a sporadic E layer

Diffraction

- T3C05: Which of the following effects might cause radio signals to be heard despite obstructions between the transmitting and receiving stations?
 - A. Knife-edge diffraction
 - B. Faraday rotation
 - C. Quantum tunneling
 - D. Doppler shift

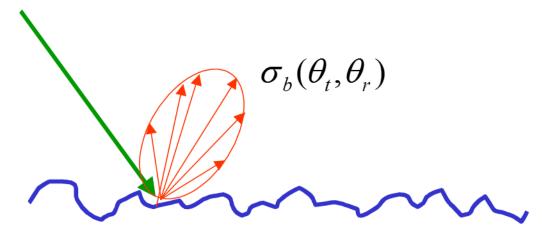
Scattering

- T3C06: What mode is responsible for allowing over-the-horizon VHF and UHF communications to ranges of approximately 300 miles on a regular basis?
 - A. Tropospheric scatter
 - B. D layer refraction
 - C. F2 layer refraction
 - D. Faraday rotation

Why Isn't the Moon's Reflection Round?

27 Steve Stearns, K6OIK Southe

Southern Peninsula Emergency Communications System (SPECS) January 28, 2017

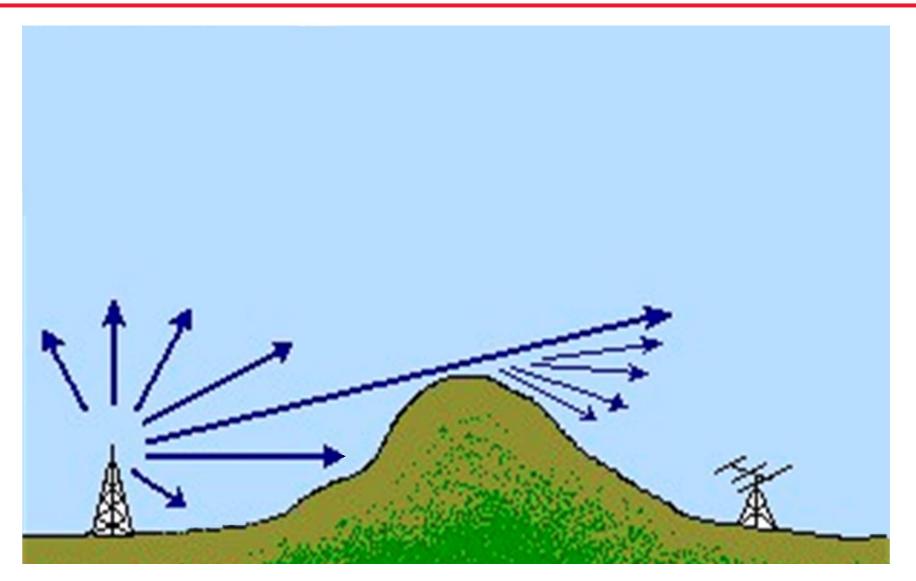

Cityscape's Reflection Isn't Just Upside Down

Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017

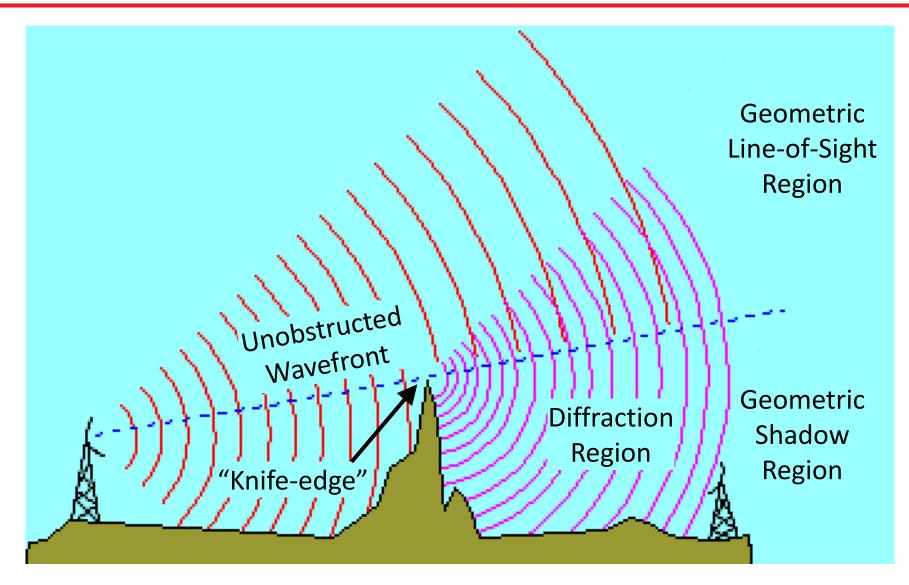
Reflection versus Scattering

Smooth surfaces reflect; irregular surfaces scatter

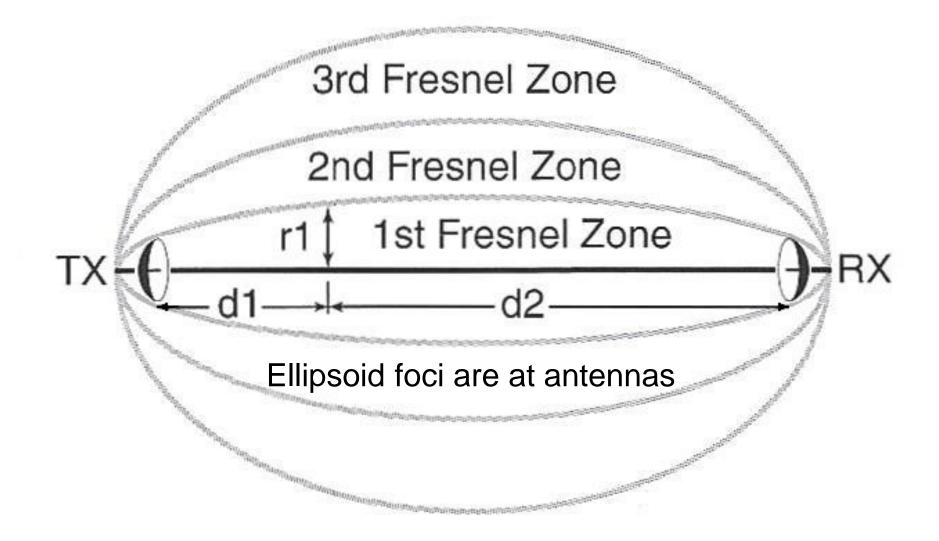
The bistatic cross-section is approximately

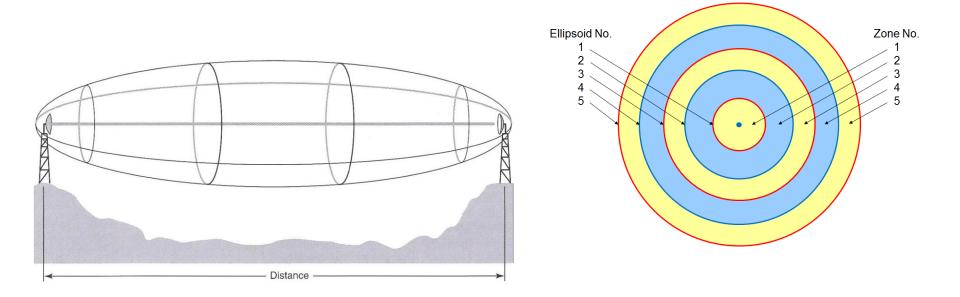

$$\sigma_{bistatic}(\theta_t, \theta_r) = \frac{\mu}{\tan^2 \beta_0} \exp\left(-\frac{\tan^2 \theta_t + \tan^2 \theta_r}{2\tan^2 \beta_0}\right)$$

Parameters β₀ and μ are tabulated; for urban industrial areas at VHF

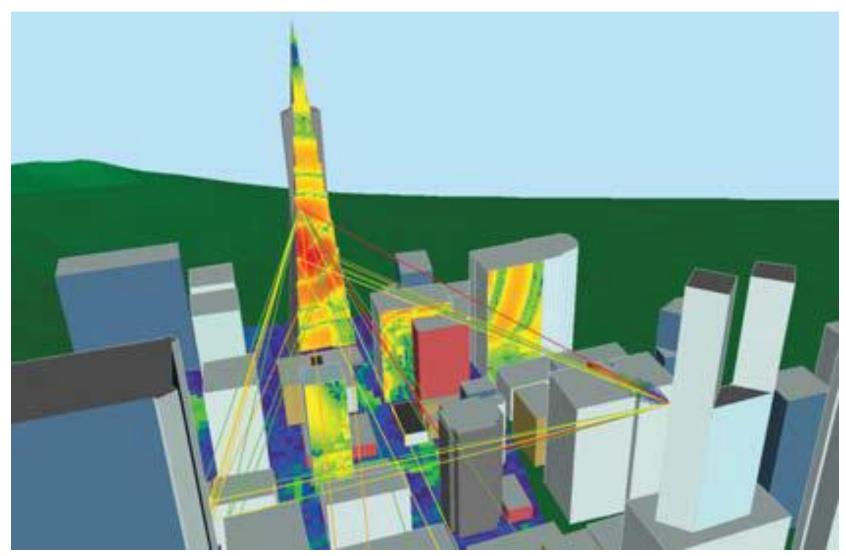

 $\beta_0 = 13^\circ$ and $\mu = -8 \,\mathrm{dB}$

29 Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017


Knife Edge Diffraction – Ray Viewpoint


Knife Edge Diffraction – Wave Viewpoint

Fresnel Ellipsoids



Line-of-Sight Paths Over Irregular Terrain – Rules of Thumb

- Obstacles (peaks and ridges) along path may extend into the Fresnel zones
- Blockages of even numbered zones is allowed
 - Secondary waves created by Huygens principle arrive in phase
- Blockages of odd numbered zones should be avoided
 - Secondary waves created by Huygens principle arrive out of phase
- Exact analysis can be done by moment method if terrain geometry and material constants are known

Physical Optics – Shooting, Bouncing Rays

Courtesy of Remcom

Equation for Link Budget and Service Contour/Coverage Calculation

Friis transmission equation

$$P_r = \frac{P_t G_t G_r \lambda^2 L_{pol} L_r}{(4 \pi r)^2}$$

Free space path loss is due to geometric spreading

$$L_{path} = \left(\frac{\lambda}{4 \pi r}\right)^2 \iff -36.6 - 20 \log_{10} f_{MHz} - 20 \log_{10} r_{miles} \text{ dB}$$
$$L_{pol} = \text{polarization mismatch loss}$$
$$L_r = \text{receiver coupling loss}$$

H.T. Friis, "A Note on a Simple Transmission Formula," Proc. IRE, May 1946

Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017

Algorithms and Software for VHF/UHF Radio Propagation Analysis

SPLAT! Radio Mobile Others

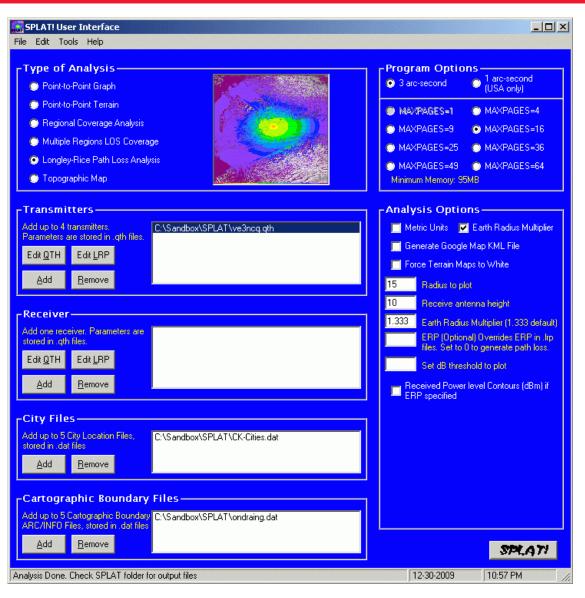
Algorithms for Propagation Prediction for VHF/UHF Link, System, and Cell Planning

Physical

- Method of Moments (MoM)
- Uniform Theory of Diffraction (UTD)
- Geometric Theory of Diffraction (GTD)
- Physical optics (PO), Geometric Optics (GO), Ray tracing, Shooting and Bouncing Ray (SBR) Method

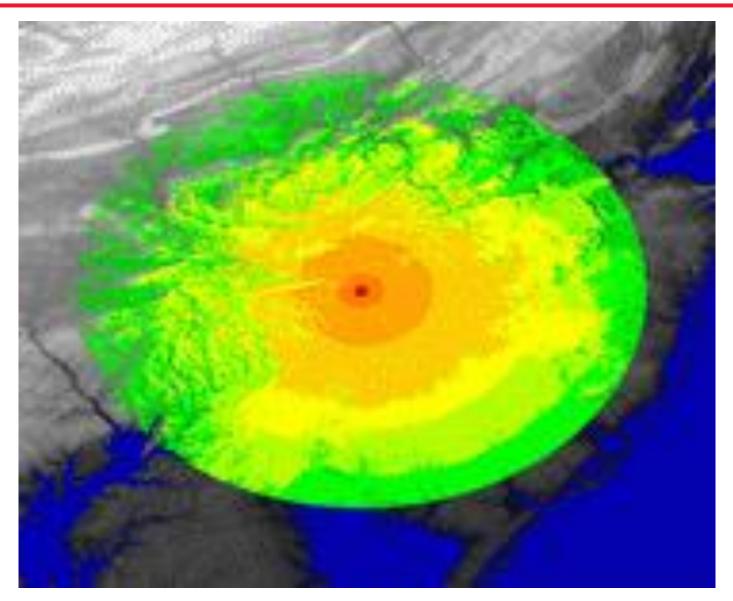
Hybrid

- ITU REC P.1546
- Irregular Terrain with Obstructions Model (ITWOM)
- Irregular Terrain Model (ITM)
- A.G. Longley and P.L Rice (1968)
- J. Epstein and D.W. Peterson (1953)

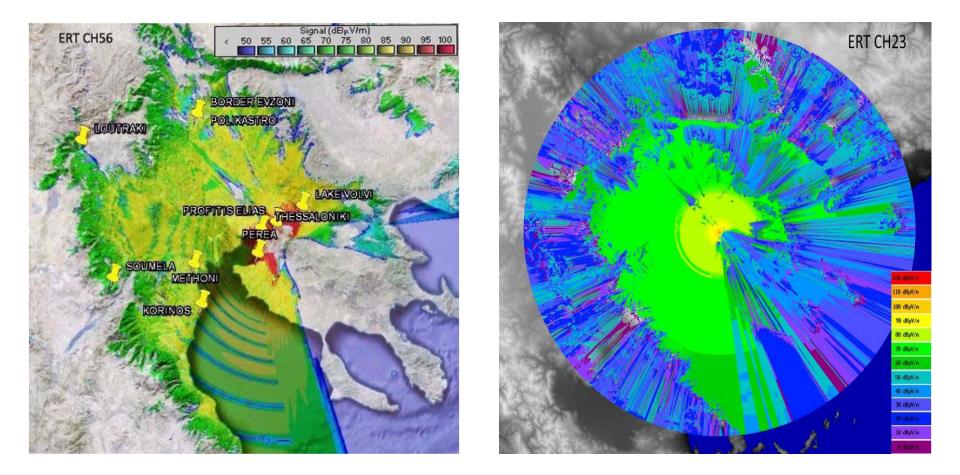

Statistical

- COST31
- Okumura
- Hata

Radio Mobile Online Main Screen


Radio Mobile Online - Mozilla Fire						_ 1	<u>s ×</u>
Eile Edit View History Bookman							
Radio Mobile Online	< (+						
www.ve2dbe.com/rmonline.	tml C Q Search	† 🖻	+	⋒			≡
Radio Mobile	Par/By Roger Coudé VE2DBE				Info	rmation	i
Welcome k6oik							
My Settings							
♥ New Site							
A My Sites							
¥ Multiple Sites							
ম্পিঁ New Link							
ম্শি My Links							
 Multiple Links 							
 New Coverage 							
S My Coverages							
Hultiple Coverages							
He New Antenna type							
My Antenna types							
Log Out							

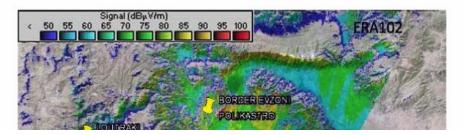
SPLAT!



39 Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January

Example of SPLAT! Coverage Depiction

Radio Mobile versus SPLAT!


Comparison by Kasampalis, et al., 2013

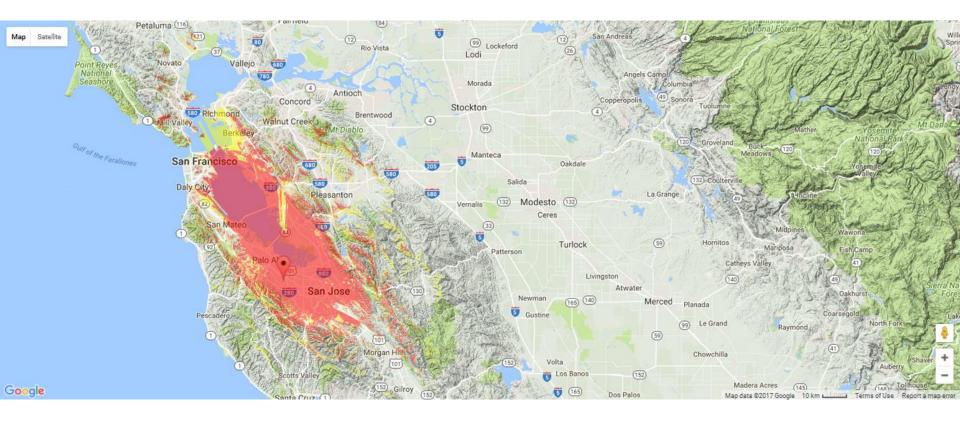
SPLAT! (ITM) than Radio Mobile. Consequently, Radio Mobile gives better simulation results with a lower standard deviation (S.D. = 7.2dB) than SPLAT! for Windows (S.D.= 16.2 dB), though both software use ITM for propagation modeling. It can be also seen in the FM case that the simulations results produced by SPLAT! for Windows are worse than Radio Mobile results, and getting worse as distance increases above around 40Km. The simulation results are, in general worse for VHF FM radio frequencies than those for UHF DVB-T frequencies.

Differences between FSH-3, SPLAT! for Windows with ITM and SPLAT! v 1.4.0 for Linux with ITWOM, with average error and standard deviation, are shown in Table VI. Errors between measurements (FSH-3) and simulations (SPLAT!-ITM & SPLAT!-ITWOM), are shown in the bar graph below, Fig. 7.

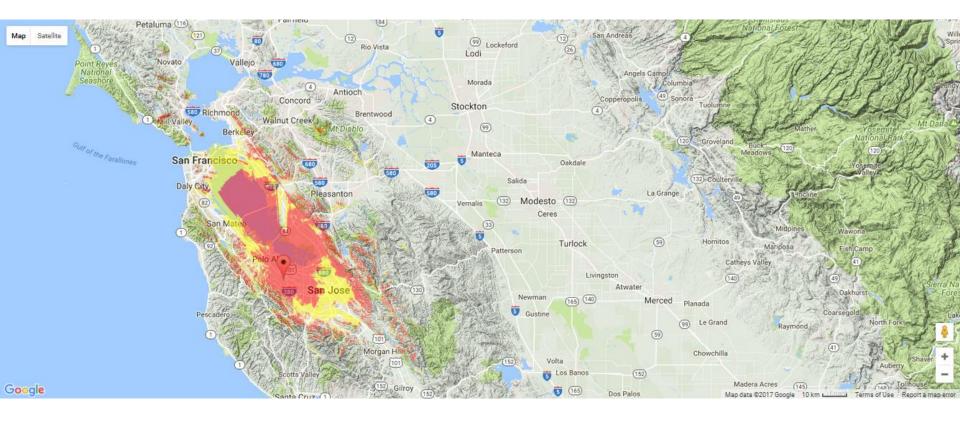
measurement points using SPLAT! with ITWOM are better than SPLAT! for Windows, which in turn gives better results for No. 1 and 2 measurement points. We observe that for frequencies in the VHF FM range, SPLAT! with ITWOM gives better simulation results than SPLAT! for Windows.

A coverage map produced by Radio Mobile (ITM Model) for Greek public FM radio "ERA-102" is shown in Fig. 8. A coverage map produced by SPLAT! for Windows (splat-1.2.3win32) for the Greek Public FM Radio Station, "ERA-102" is shown in Fig. 9.

SPECS Repeater Coverage

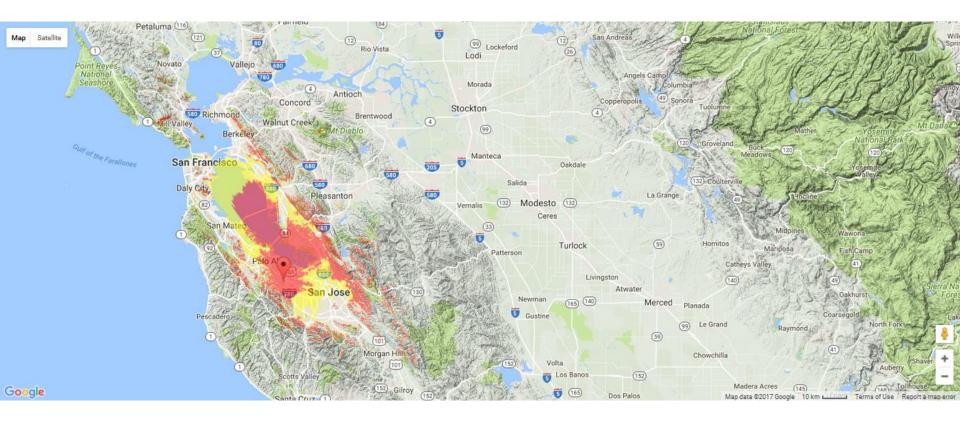

Repeater System Parameters

Parameter	2-meter machine	1.25-meter machine	70-cm machine		
Frequency	145.270 MHz	224.140 MHz	440.800 MHz		
Latitude	37.368127	37.368068	37.368287		
Longitude	-122.080242	-122.080344	-122.080265		
Elevation (building roof)	75.3	75.3	78.3		
Antenna height above roof	24 ft/7.3 m to ant ctr. 17 ft/5 m to ant btm.	1.83 m	2.62 m		
HAAT (to antenna center)	95 ft.	75 ft.	100 ft.		
Antenna model	Hustler G7-144	Comet CA-Super22	Hustler G6-440		
Antenna type	15.33 ft. vertical GP	8 ft. vertical GP	7.25 ft. vertical GP		
Antenna gain	9.15 dBi (7.0 dBd)	6.6 dBi (4.85 dBd)	8.15 dBi (6.0 dBd)		
Antenna SWR	1.5	1.5	1.5		
Tx Power into duplexer	33 W	28 W	25 W		
Duplexer loss	1.6 dB	1.4 dB	1.0 dB		
Cable type	Heliax LDF4-50A	Heliax LDF4-50A	Heliax LDF5-50A		
Cable length	60 ft.	60 ft.	70 ft.		
Cable matched loss	0.482 dB	0.603 dB	0.558 dB		
Cable loss at SWR = 1.5	0.519 dB	0.658 dB	0.638 dB		
Antenna mismatch loss	0.18	0.18	0.18		
Coax connector loss	1 dB	1 dB	1 dB		
Total loss	3.299	3.238	2.818		
Power into antenna	15.44 W	13.28 W	13.07 W		
Receiver sensitivity	< 0.1 µV	< 0.1 µV	< 0.1 µV		

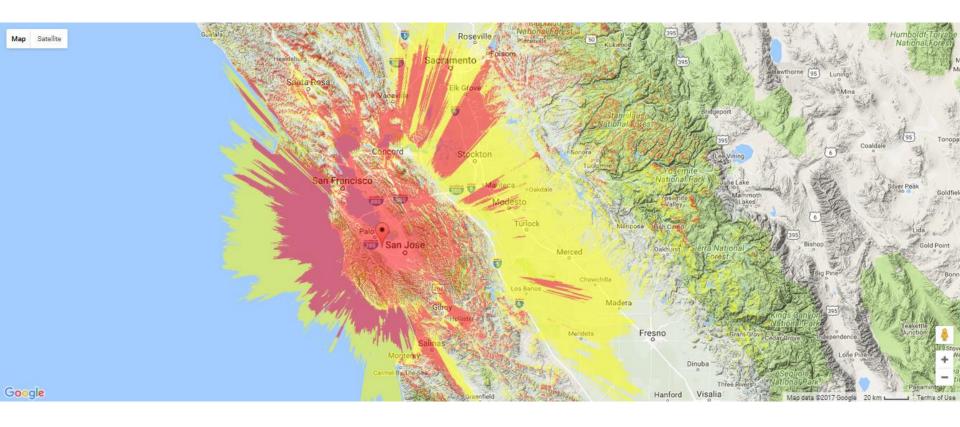

44 Steve Stearns, K6OIK

Pause for Demonstration

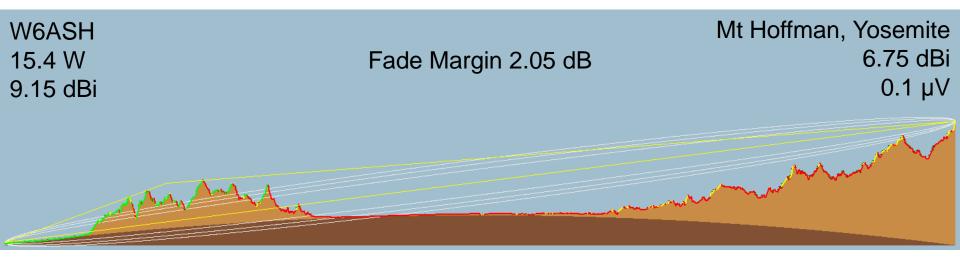
W6ASH 2-Meter Coverage from a 5-W HT

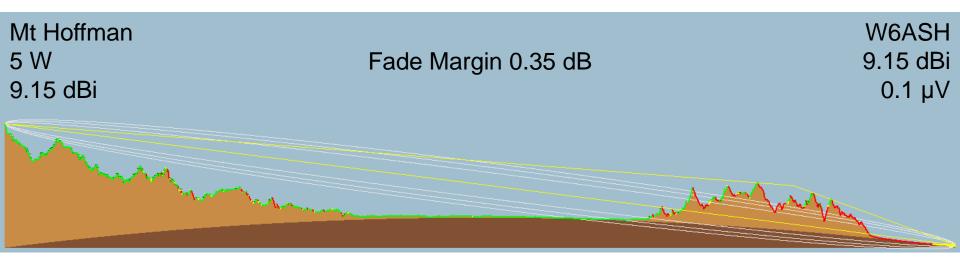


W6ASH 1.25-Meter Coverage from a 5-W HT



47 Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017


W6ASH 70-cm Coverage from a 5-W HT



W6ASH 2-Meter DX Coverage, 15.4 W, 80% Probability

W6ASH to Yosemite (and Back) on 2 meters

Further Reading

- The ARRL Handbook for Radio Communications 2017, 94th ed., American Radio Relay League, 2016
- S. Kasampalis, et al., "Longley-Rice Model Prediction Inaccuracies in the UHF and VHF TV Bands in Mountainous Terrain," *IEEE BMSB*, June 2015
- S. Kasampalis, et al., "Comparison of Longley-Rice, ITM and ITWOM propagation models for DTV and FM Broadcasting," *IEEE WPMC*, June 2013
- S. Kasampalis, et al., "Comparison of ITM and ITWOM Propagation Models for DVB-T Coverage Prediction," *IEEE BMSB*, June 2013
- L. Barclay, ed., *Propagation of Radiowaves*, 3rd ed., IET, 2013, Ch. 15
- C.A. Levis, J.T. Johnson, and F.L. Teixeira, *Radiowave Propagation: Physics and Applications*, Wiley, 2011, Chap. 5-8
- J.A. Magliacane, KD2BD, and Bill Walker, W5GFE, "Splat!: An RF Signal Propagation Loss and Terrain Analysis Tool," QEX, pp. 9-14, July 2009
- B. Bisharat et al., "Unusual Terrain Influence on VHF/UHF Propagation," QEX, pp. 26-31, Jan. 2009
- T.K. Sarkar, et al., "A Survey of Various Propagation Models for Mobile Communication," *IEEE Antennas and Propagation Magazine*, June 2003

Further Reading continued

- G. West, WB6NOA, "Predicting Weather-Related VHF/UHF Range Enhancement," CQ, vol. 57, no. 6, pp. 44-47, June 2001
- "VHF/UHF Propagation in the Troposphere," QST, vol. 85, no. 5, p. 70, May 2001
- C. Tzaras and S.R. Saunders, "Comparison of Multiple-Diffraction Models for Digital Broadcasting Coverage Prediction," *IEEE Trans. Broadcasting*, Sep. 2000
- F. Pérez-Fontán and J.M. Hernando-Rábanos, "Comparison of Irregular Terrain Propagation Models," *IEEE Trans. Broadcasting*, June 1995
- M.D. Yacoub, Foundations of Mobile Radio Engineering, CRC Press, 1993
- "Coverage Prediction for Mobile Radio Systems Operating in the 800/900 MHz Frequency Range," H. Bertoni, editor, *IEEE Transactions on Vehicular Technology*, special issue on mobile radio propagation, vol. 37, no. 1, pp. 3-44, Feb. 1988
- Land-Mobile Communications Engineering, D. Bodson, G.F. McClure, and S.R. McConoughey, editors, IEEE Press, 1984
- A.G. Longley and P.L. Rice, Prediction of Tropospheric Radio Transmission Loss Over Irregular Terrain - A Computer Method, DTIC AD0676874, ESSA ERL 79-ITS 67, July 1968

The End

This presentation will be archived at http://www.specsnet.org/past-presentations and http://www.fars.k6ya.org/docs/k6oik

53 Steve Stearns, K6OIK Southern Peninsula Emergency Communications System (SPECS) January 28, 2017