Universal Equivalent Circuits for All Antennas

Stephen D. Stearns

Consulting Engineer stearns@ieee.org

1

Series and parallel RLC resonant circuits have long been the staple equivalent circuits for dipole and loop antennas despite being narrowband approximations. This paper shows how to make universal equivalent circuits for any antenna over any bandwidth. Part 1 introduces the history of classical electric network synthesis and Smith charts and reviews antenna impedance and admittance properties.

Part 2 explains the modes of vibration of continuous structures, natural frequencies, feedpoint current, and impedance resonances. The impedance function of any antenna can be accurately modeled by two of four universal equivalent circuits given computed or measured impedance data and a circuit optimizer. Examples of broadband universal equivalent circuits are shown for dipole, circular loop, and discone antennas over multi-octave and decade bandwidths.

Broadband equivalent circuits are useful for interpolating between data points and performing lab tests without radiating. 1-port equivalent circuits are useful for making dummy loads for reflection experiments or match network testing. 2port equivalent circuits are useful for making emulators for transmission tests.

Topics

- The Smith chart little known facts
- Results from classical network theory
- Antenna impedance functions
- Low-order narrowband equivalent circuits
- Defective equivalent circuits
- Universal equivalent circuits
- Examples demonstrating UEC theory

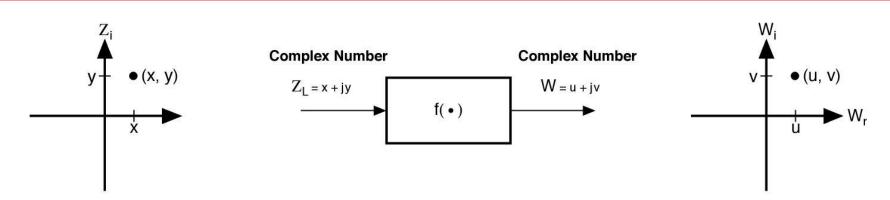
The Smith Chart

The Smith Chart

Phillip Hagar Smith, 1905-1987

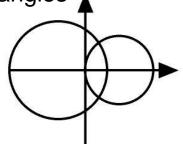
Developed by Phillip H. Smith at Bell Labs 1936 Published in *Electronics*, Jan. 1939 and Jan. 1944 Mrs. Smith sold copyright to IEEE MTT-S in 2015

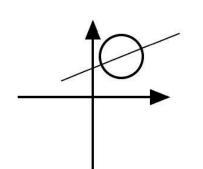
Complex Functions



Basic types of complex functions

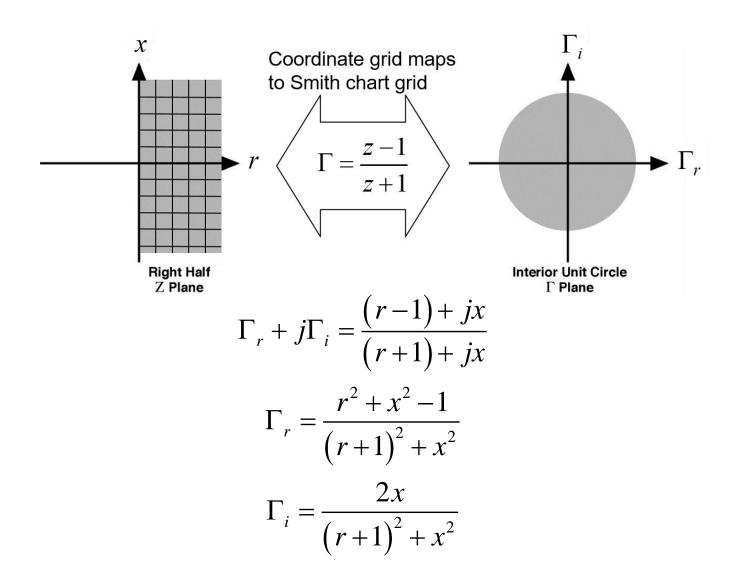
- Global Properties
 - Linear lines map to lines
 - Bilinear circles map to circles
- Local Properties
 - Conformal right angles map to right angles



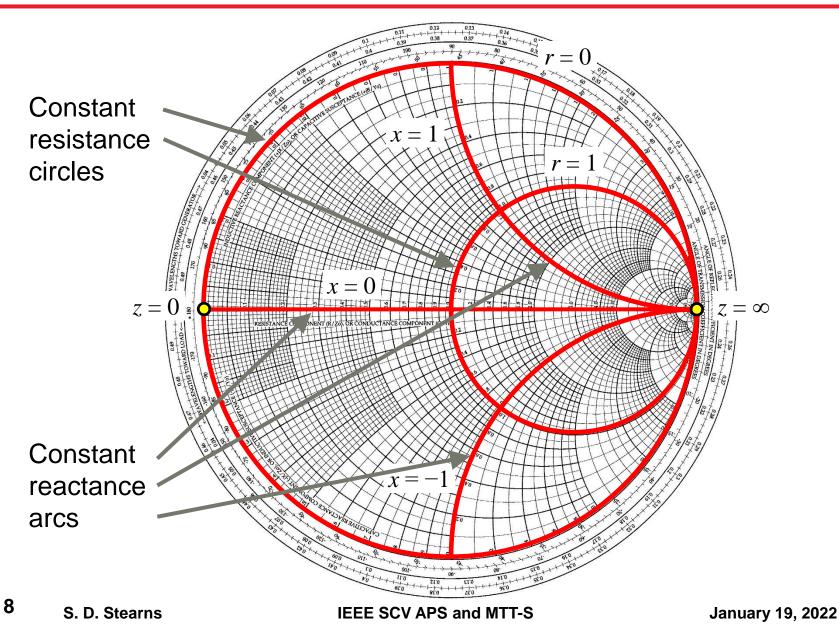


January 19, 2022

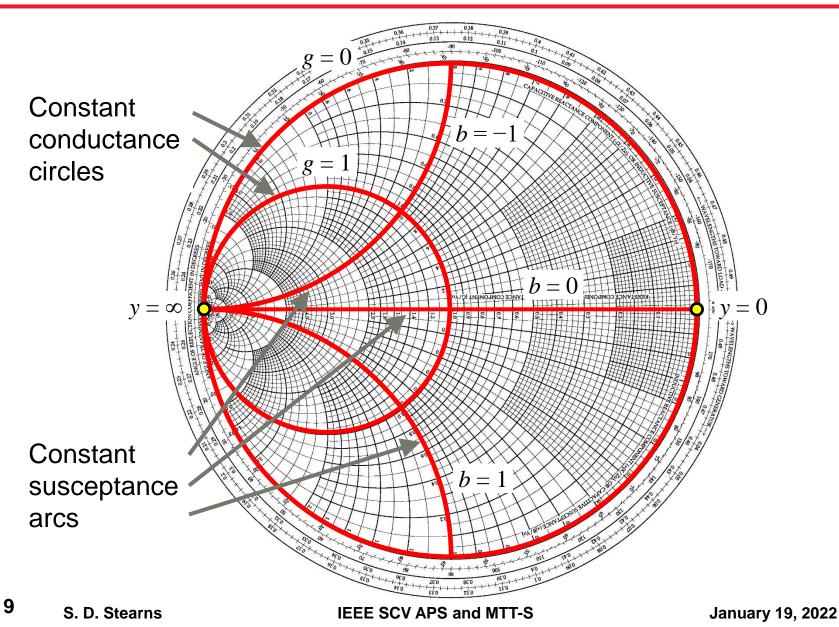
Smith Chart Coordinate Grid



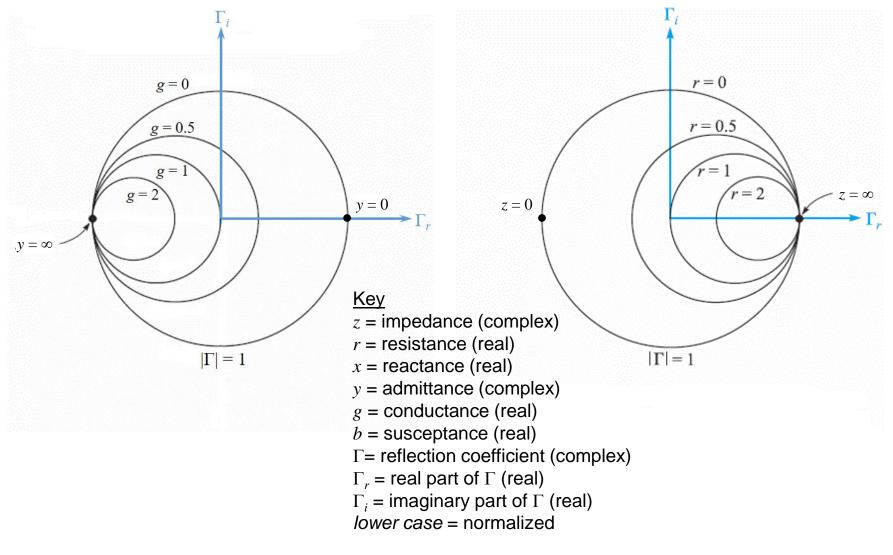
Impedance Coordinates



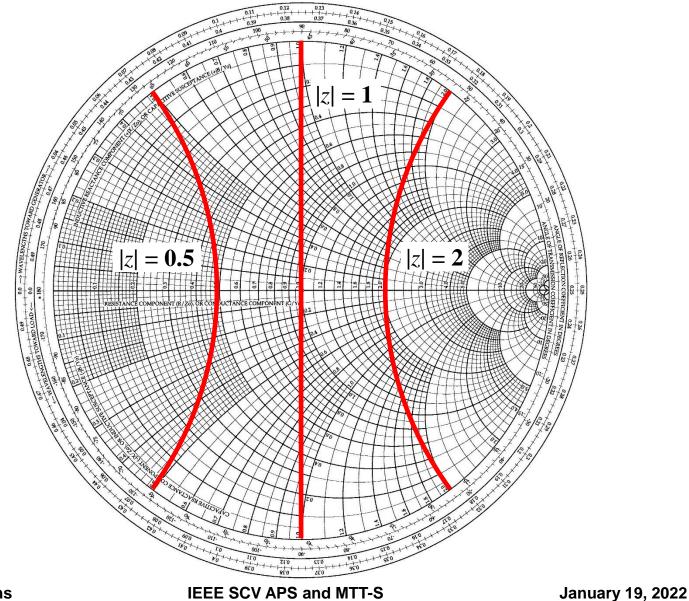
Admittance Coordinates



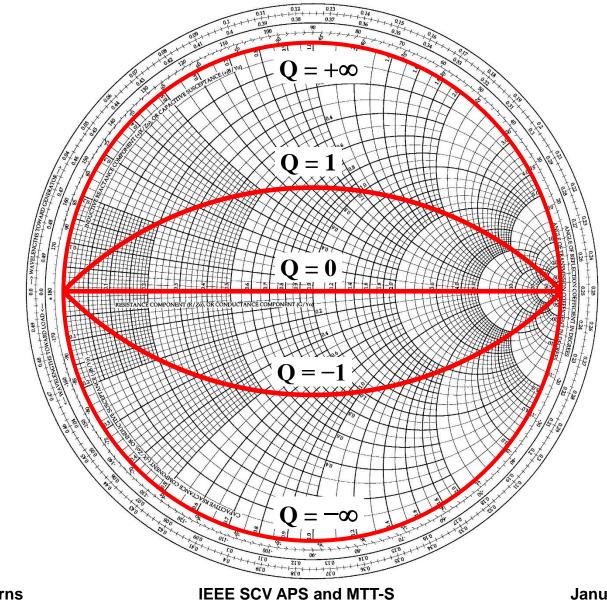
Conductance and Resistance Circles Admittance and Impedance Zero and Infinity Points



Constant Immittance Magnitude Arcs

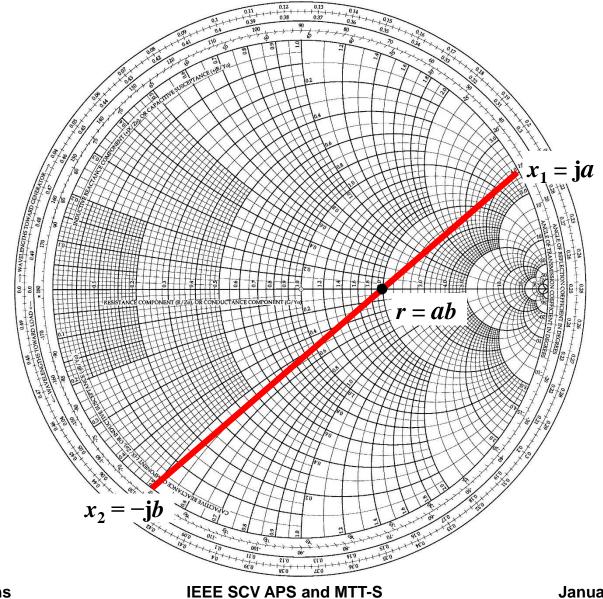


Constant Q (Immittance Phase) Arcs

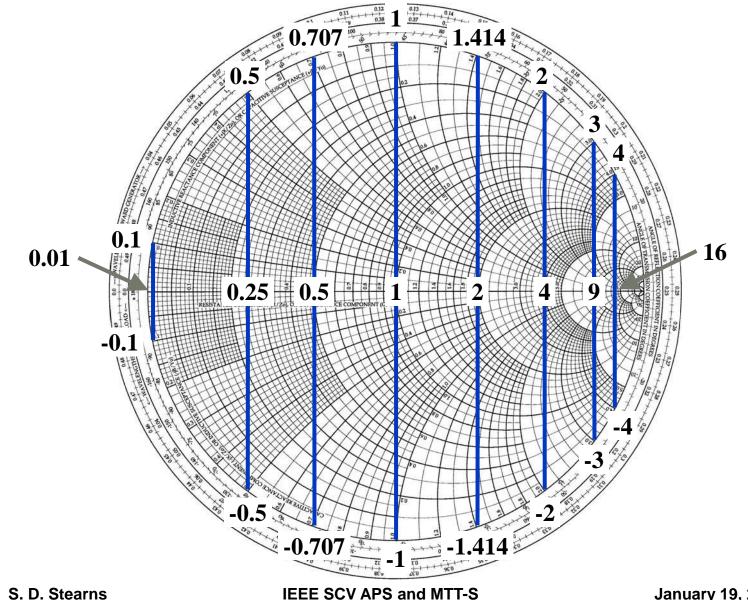


12 S. D. Stearns

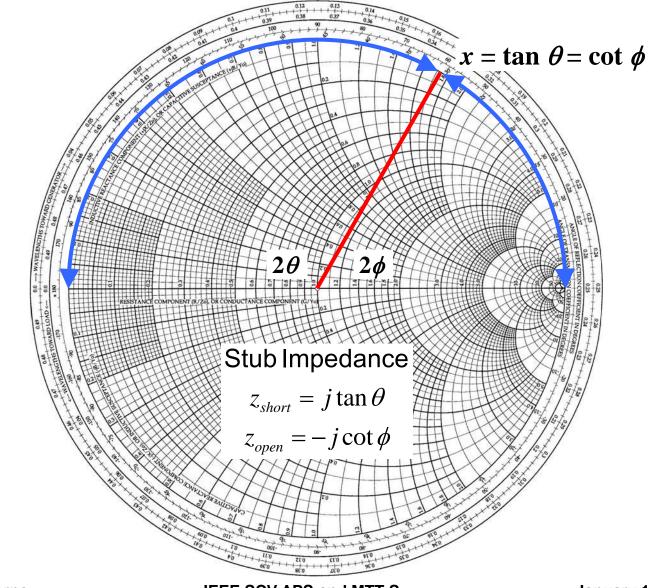
Multiplication and Division



Squares and Square Roots



Tangents and Cotangents

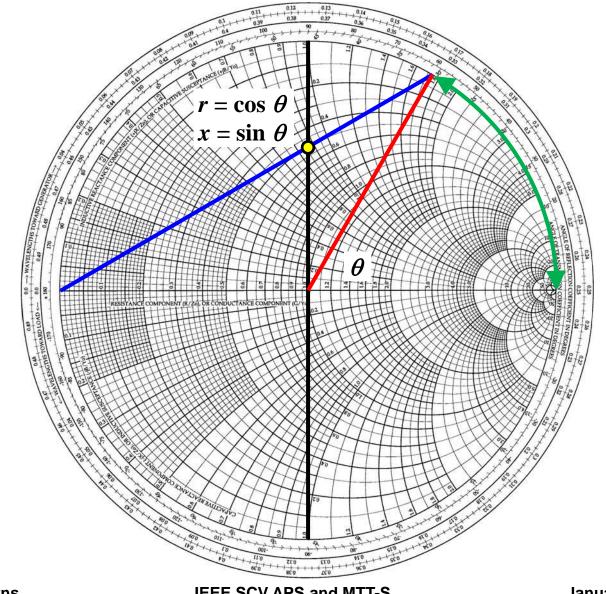


15 S. D. Stearns

IEEE SCV APS and MTT-S

January 19, 2022

Sines and Cosines



Classical Network Theory

Key Dates in Classical Network Theory

1893	"Impedance" – A.E. Kennelly
1893-1905	AC circuit theory using complex numbers or phasors, "reactance" – C.P. Steinmetz
1923-1924	Reactance Theorems – O.J. Zobel, R.M. Foster
1924	Lossless impedance synthesis by partial fractions – R.M. Foster
1926	Lossless impedance synthesis by continued fractions – W. Cauer
1931	Passive impedance synthesis using RLCM – O. Brune
1937	Passive impedance synthesis using a single resistor – S. Darlington
1946	Passive n-port synthesis using RLCM – Y. Oono
1949	Passive synthesis using RLC without transformers – R. Bott & R.J. Duffin
1957	Synthesis of Passive Networks – E.A. Guillemin
1958	Network Synthesis – D.F. Tuttle
1 962	Linear Active Network Theory – L. de Pian
1964	Singular network elements – H.J. Carlin
1973	Network Analysis and Synthesis – B.D.O. Anderson & S. Vongpanitlerd
2009	All singular elements found – A.M. Soliman
2002-2010	 Realizability, synthesis, and stability of non-Foster active networks – S.E. Sussman-Fort, S.D. Stearns, others

Pioneers of Electric Network Theory

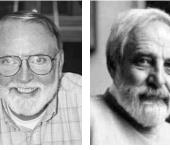
Ronald Martin Foster 1896-1998

Wilhelm Cauer 1900-1945

Otto Walter Heinrich Oscar Brune 1901-1982

1870-1954

Sidney Darlington 1906-1997



Richard James Duffin 1909-1996

Herbert Jacob Carlin 1917-2009

Dante Ciriaco Youla 1925-2021

Arthur Edwin Kennelly 1861-1939

Charles Proteus Steinmetz George Ashley Campbell 1865-1923

Otto Julius Zobel 1887-1970

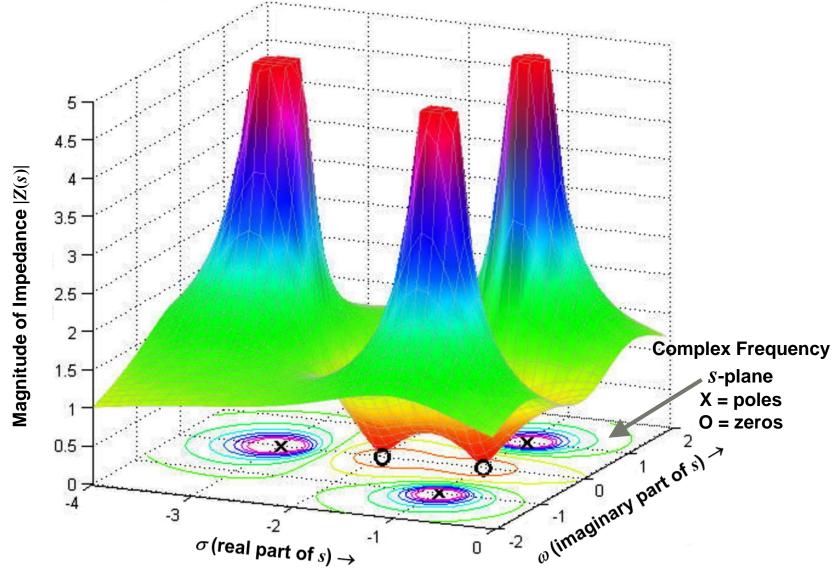
Raoul Bott

1923-2005

Ernst Adolph Guillemin Mac Elwyn Van Valkenburg 1898-1970 1921-1997

Norman Balabanian 1922-2009

Poles, Zeros, and Complex Frequency



Immittance (Impedance & Admittance) Functions

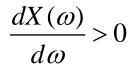
- Immittance functions of passive devices, elements, and networks are "positive-real" functions of complex frequency $s = \sigma + j\omega$
- Analytic in the right half plane
- Poles and zeros may exist only on $j\omega$ axis or in the left half plane
- Immittance functions of lumped RLC networks are rational functions

$$Z(s) = \frac{as^3 + bs^2 + cs + d}{es^2 + fs}$$

- All coefficients positive, no middle terms missing
- Degrees of numerator and denominator polynomials differ by at most 1
- If the degrees are the same, the network has losses
- The magnitude of an immittance function of a passive element or network cannot increase faster than f (1st power of frequency) nor decrease faster than 1/f (inverse frequency)
- For lossless elements, devices, and networks, the slopes of reactance and susceptance vs frequency are strictly positive at all frequencies (except discontinuities)

For lossless elements, devices, and networks, the slopes of reactance and susceptance vs frequency are strictly positive at all frequencies (except discontunities).

• O.J. Zobel (1923)



R.M. Foster (1924)

Consequences

- Poles and zeros exist only on the real frequency axis
- Poles and zeros are simple
- Poles and zeros have positive real residues
- Poles alternate with zeros
- A pole or zero exists at zero and at infinity

O.J. Zobel, "Theory and Design of Uniform and Composite Electric Wave-filters," *Bell System Technical Journal*, vol. 2, no. 1, pp. 1-46, Jan. 1923. R.M. Foster, "A Reactance Theorem," *Bell System Technical Journal*, vol. 3, no. 2, pp. 259-267, Apr. 1924.

S. D. Stearns

The real and imaginary parts of a passive immittance (impedance or admittance) function cannot be specified independently. One determines the other.

- Real and imaginary parts are related by Poisson/Schwarz integrals
- A resistance is generally accompanied by reactance or is not passive
- Realizable circuits use only passive components

Real and Imaginary Parts are Not Independent

Impedance

$$Z(s) = \frac{as^3 + bs^2 + cs + d}{es^2 + s}$$

Real part

$$R(j\omega) = \frac{(be-a)\omega^2 + (c-de)}{e^2\omega^2 + 1}$$

Imaginary part

$$X(j\omega) = \frac{ae\omega^4 + (b - ce)\omega^2 - d}{e^2\omega^3 + \omega}$$

Relation Between Real and Imaginary Parts

Poisson/Schwarz integrals

> AKA "Hilbert transform" or Kramers-Kronig relations

$$R(\omega) = \frac{2}{\pi} \int_{0}^{\infty} \frac{u X(u)}{\omega^{2} - u^{2}} du + R_{0}$$

A positive constant

An analytic function

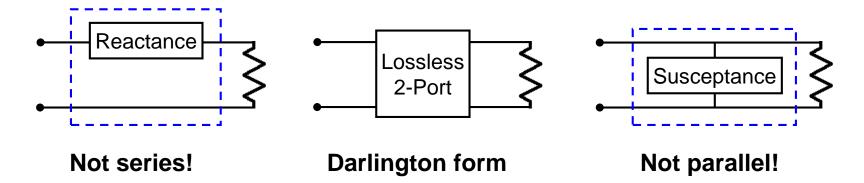
$$X(\omega) = \frac{-2\omega}{\pi} \int_{0}^{\infty} \frac{R(u)}{\omega^{2} - u^{2}} du + X_{0}(\omega)$$

- Conductance and susceptance are related similarly
- A consequence
 - > Letting $R(\omega) = R\omega^2$, we find that $X(\omega)$ does not exist
 - Passive square-law resistors are an impossibility

The real and imaginary parts of a passive impedance are not independent.

Darlington Forms (1937, 1939)

 Every positive real, rational immittance function can be realized as a reactance 2-port terminated by a resistor



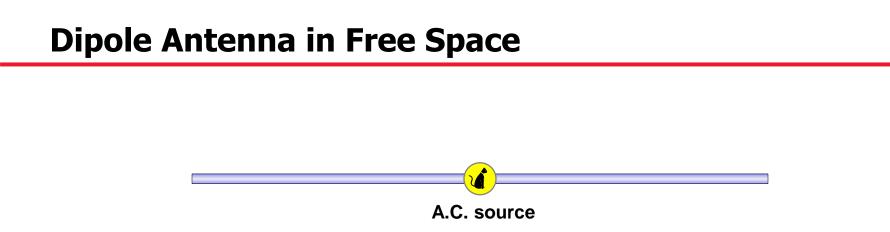
- Antennas can be represented by equivalent circuits in Darlington form, over any given band
- 2-port antenna emulators are based on Darlington forms

S. Darlington, "Synthesis of Reactance 4-Poles which Produce Prescribed Insertion Loss Characteristics," *Journal of Mathematics and Physics*, vol. 18, no. 4, pp. 257-353, April 1939. B.S. Yarman, et al., "An Immitance Based Tool for Modelling Passive One-Port Devices by Means of Darlington Equivalents," *Int. J. Electron. Commun.*, vol. 55, no. 6, pp. 443-451, Dec 2001.

Every antenna has an equivalent circuit over any given band, in Darlington form.

Antenna Impedance Functions

On the Smith Chart



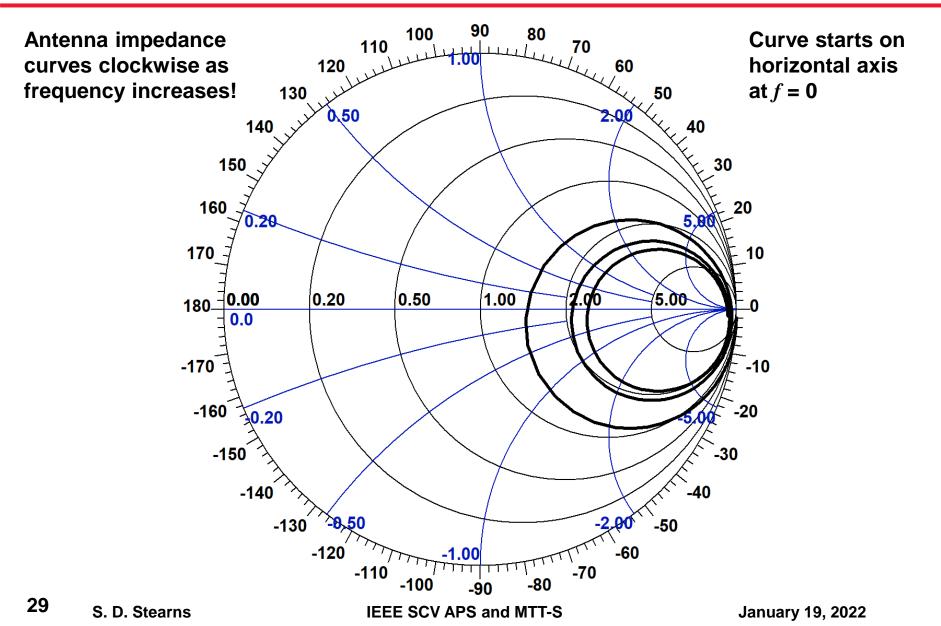
- A dipole antenna is symmetric and center fed
- A dipole's feedpoint impedance is a complex-valued function of frequency, length, and diameter

Z(f,L,d) = R(f,L,d) + jX(f,L,d)

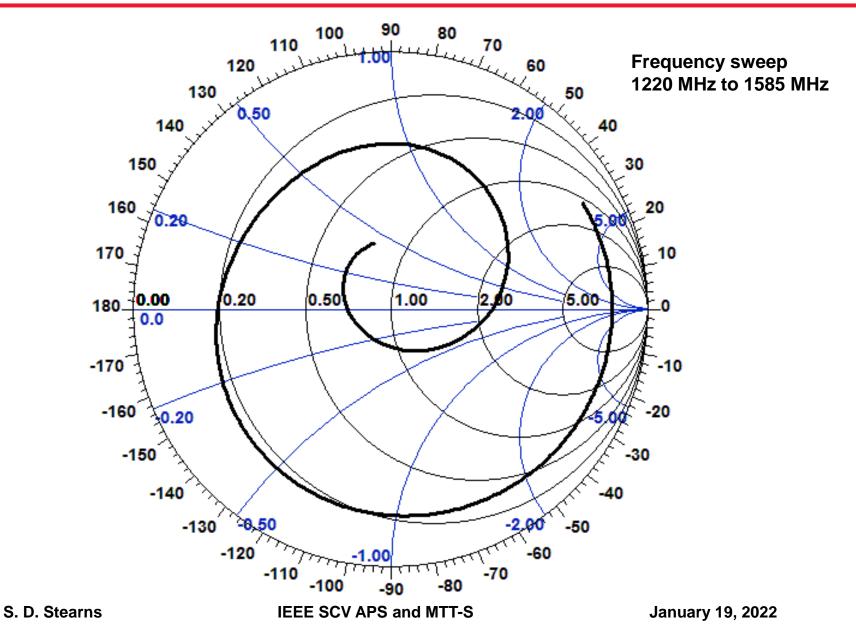
 1st resonance occurs when length is a little less than a half wavelength

$$L = \frac{K\lambda}{2} = \frac{Kc}{2f}$$

Example 1: 98.4-ft Thin-Wire Dipole (L/d = 11,200) from 1 MHz to 30 MHz

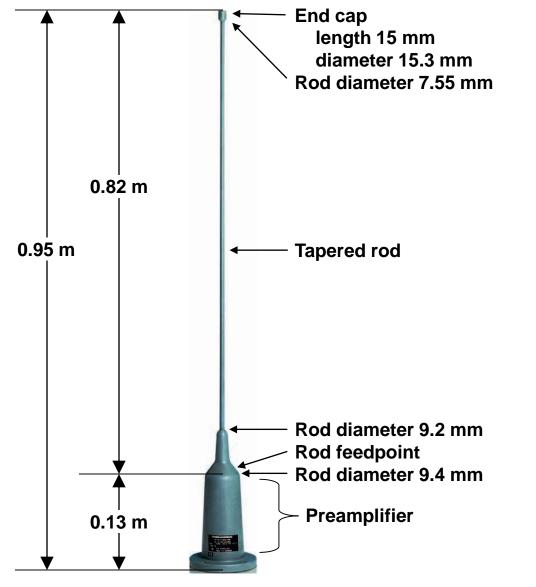


Example 2: GPS Antenna



30

Example 3: Rohde & Schwarz HE010 Active Monopole

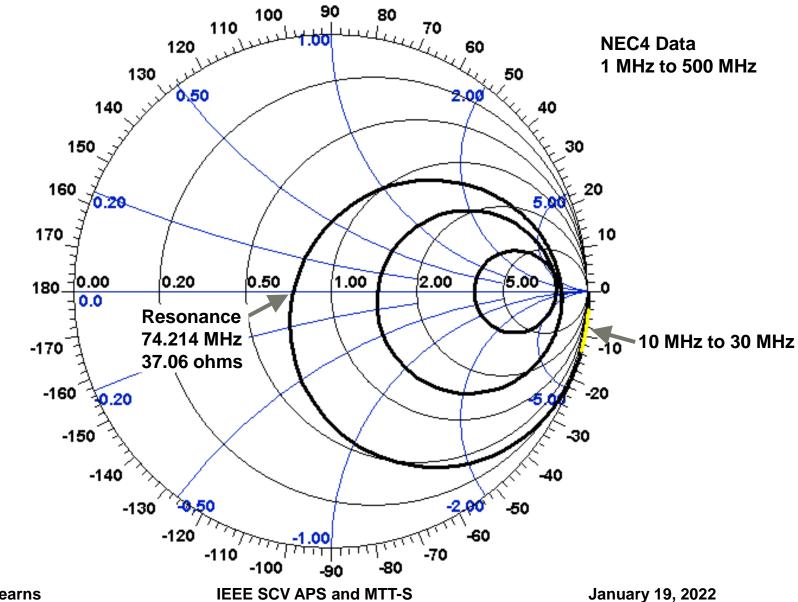


31 S. D. Stearns

IEEE SCV APS and MTT-S

January 19, 2022

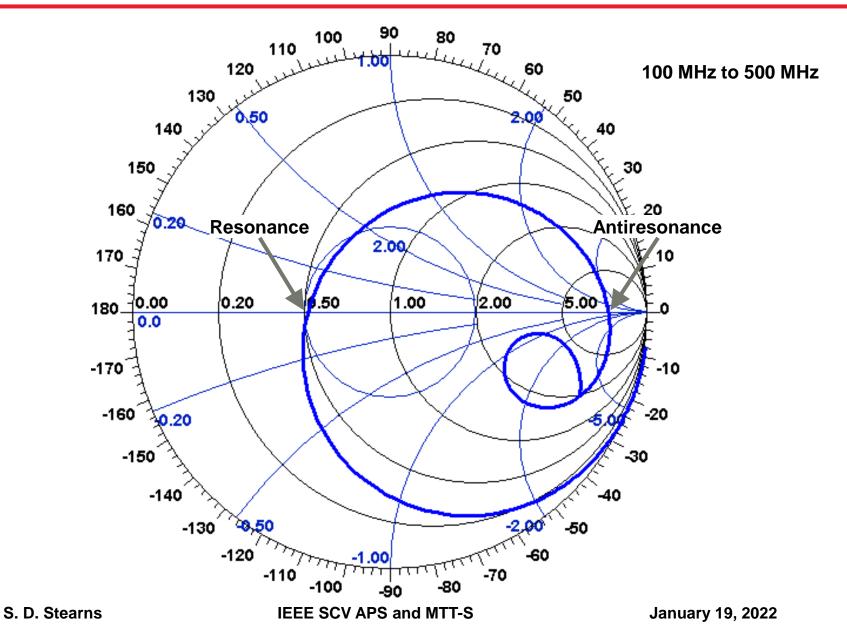
Example 3: R&S HE010 Monopole Impedance



32 S. D. Stearns

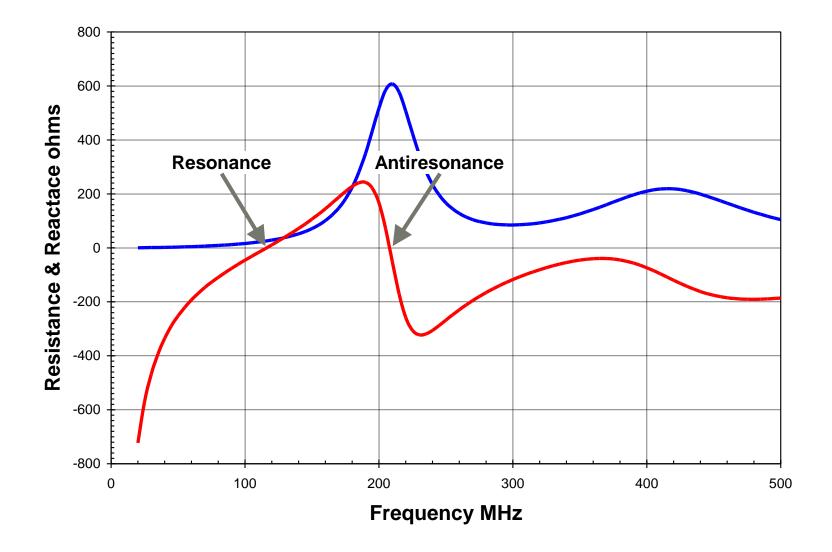
Typical Spy Plane Tupolev Tu-16R Badger

Example 4: Bent-Blade Antenna



34

Example 4: Bent-Blade Antenna Feedpoint Impedance



Example 5: VHF-UHF Discone Antenna

All About the Discone Antenna: Antenna of Mysterious Origin and Superb Broadband Performance

Learn about the development, history and some applications of a discone antenna.

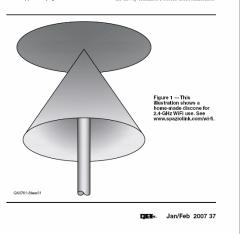
Steve Stearns, K6OIK

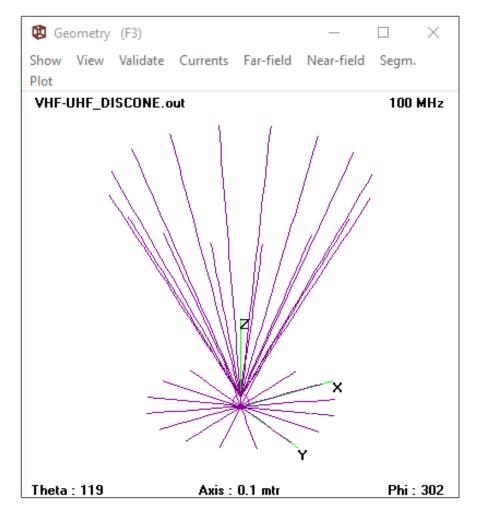
66 demanded by high-definition television have considerable range ... "With these prescient words, Philip angle being 90°, which gives a flat disk of ra-S. Carter of RCA opened a 1939 paper that compared a variety of antennas for the emerging field of "high-definition" television. Carter showed conclusively that conical antennas held distinct advantages over dipoles and folded dipoles when it comes to broadband performance. Today, conical antennas are making a comeback for broadband applications such as digital television and UWB (ultra-wideband) or impulse radio. Stacked arrays of bowties and biconical dipoles are gradually displacing traditional mainstay antennas such as Yagis and log-periodics for the rooftop reception of digital television (DTV). One conical antenna, long popular among scanner hobbyists, the discone, has been described in previous articles in Amateur Radio magazines and books The story has never been told fully, however. This article explains the history and theory of the discone, corrects some common misunderstandings, and presents an EZNEC model for a 0.6-octave discone that readers may copy and scale to their favorite frequency bands. Conical antennas, and the discone in par-

ticular, have an obscure but fascinating history Sergei Alexander Schelkunoff, at Bell Labs, was a titan of antenna theory in the early to mid 20th Century, In 1941, Schelkunoff published a major paper in the Proceedings of the IRE, which, among other things, analyzed the symmetric biconical dipole and showed that many other antennas can be analyzed

Mountain View, CA 94040-0917 k6oik@arrl.net

The frequency bandwidths as extensions of it.¹ The discone antenna ent on the discone antenna. Kandoian's novel (Figure 1) is one such extension, in which the or inventive element was apparently that the antenna could be encased in a radome, making biconical dipole is asymmetric, one cone's it suitable for aircraft, not that it used a cone or dius equal to the cone length. Two years later, disk per se, those ideas being obvious in view of Schelkunoff's prior work. The patent was in 1943, Armig Kandoian at the Federal Telephone and Radio Corporation applied for a patgranted in 1945, whereupon Kandoian and his colleagues, Sichak, Felsenheld, and Nail, at 1Notes appear on page 43, the newly renamed Federal Telecommunica-

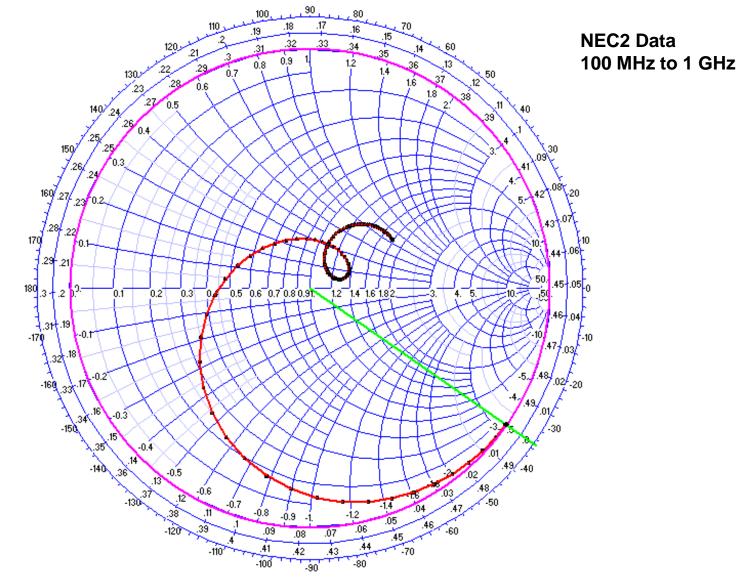




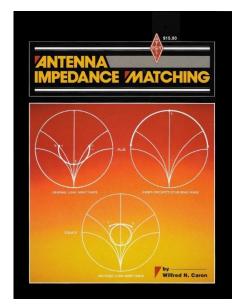
Steve Stearns, K6OIK "All About the Discone Antenna," QEX, pp. 37-44, January/February 2007.

PO Box 4917

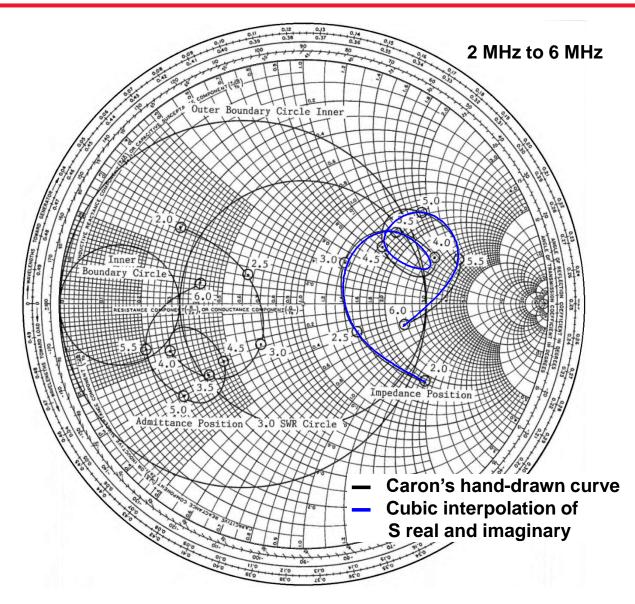
Example 5: VHF-UHF Discone Antenna



Example 6: Broadband Dipole Antenna



Wilfred N. Caron, *Antenna Impedance Matching*, ARRL, 1989



Summary

- Impedance curves always bend or spiral clockwise as frequency increases
 - A property of passive impedance functions whether lossy or lossless
 - Unrelated to Foster's Reactance theorem
- Crossings of the horizontal axis of the Smith chart are called resonances
 - Downward crossings are called anti-resonances

An antenna can have any number of resonances

- An antenna can have no resonances. Its impedance curve can lie entirely in the top or bottom half of the Smith chart
- An antenna can have a *finite* number of resonances, e.g. fat dipoles, loop antennas, and bent blade antennas
- An antenna can have an *infinite* number of resonances, e.g. dipole reactance given by the induced emf method

Impedance Model or Equivalent Circuit ?

Impedance Model vs Equivalent Circuit

 $R_{in} = \frac{\eta}{4\pi \sin^{2}(kl)} \left\{ 2\gamma + 2\ln(2kl) - 2\operatorname{Ci}(2kl) + \sin(2kl) \left[\operatorname{Si}(4kl) - 2\operatorname{Si}(2kl) \right] + \cos(2kl) \left[\operatorname{Ci}(4kl) - 2\operatorname{Ci}(2kl) + \gamma + \ln(kl) \right] \right\}$ $X_{in} = \frac{\eta}{4\pi \sin^{2}(kl)} \left\{ 2\operatorname{Si}(2kl) - \cos(2kl) \left[\operatorname{Si}(4kl) - 2\operatorname{Si}(2kl) \right] + \sin(2kl) \left[\operatorname{Ci}(4kl) - 2\operatorname{Ci}(2kl) + \gamma + 2\ln(ka) - \ln(kl) \right] \right\}$

Impedance Models

- A mathematical formula or algorithm for calculating impedance
- > Need not represent a physical equivalent
- Can be any kind of function from simple to special
 - Polynomials
 - Rational functions
 - Sine and cosine integrals
 - Ad hoc formulas
- A compact compressed representation of impedance behavior
- Formula approximates given impedance behavior to a specified accuracy over a specified bandwidth
- Good for computation, interpolation, and SWR prediction, but not physical testing and measurement

- Equivalent Circuits
 - A special kind of model an electric circuit or network
 - Physically realizable
 - Made of passive elements
 - Resistors
 - Inductors
 - Capacitors
 - Mutual inductance
 - Ideal transformers
 - Impedance specified by a *positive real* rational function
 - Circuit approximates given impedance behavior to a specified accuracy over a specified bandwidth
 - Can build to make antenna dummies and emulators for reflection and transmission tests and measurements

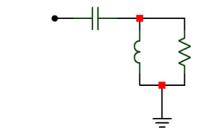
IEEE SCV APS and MTT-S

Impedance Model vs Equivalent Circuit

$$R_{in} = \frac{\eta}{4\pi \sin^2(kl)} \left\{ 2\gamma + 2\ln(2kl) - 2\operatorname{Ci}(2kl) + \sin(2kl) \right\}$$
$$X_{in} = \frac{\eta}{4\pi \sin^2(kl)} \left\{ 2\operatorname{Si}(2kl) - \cos(2kl) \left[\operatorname{Si}(4kl) - 2\operatorname{Si}(2kl) - 2\operatorname{Si}(2kl) - 2\operatorname{Si}(2kl) - 2\operatorname{Si}(2kl) \right] \right\}$$

Impedance Models

- A mathematical formula or algorithm for calculating impedance
- > Need not represent any physical device
- Can be any kind of function from simple to special
 - Polynomials
 - Rational functions
 - Sine and cosine integrals
 - Ad hoc formulas
- A compact compressed representation of impedance behavior
- Formula approximates given impedance behavior to a specified accuracy over a specified bandwidth
- Good for computation, interpolation, and SWR prediction, but not physical testing and measurement

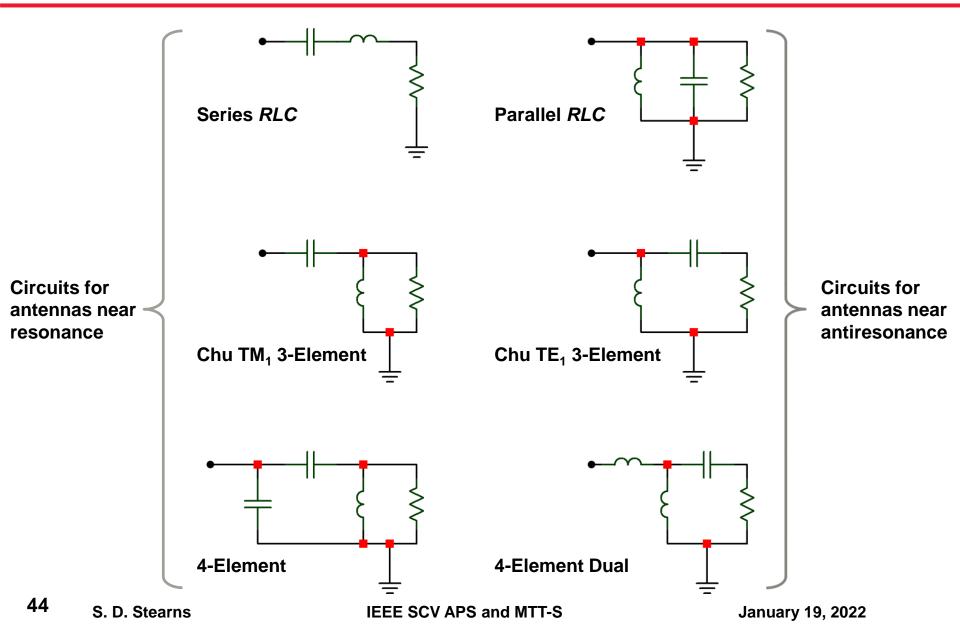


- Equivalent Circuits
 - A special kind of model an electric circuit or network
 - Physically realizable
 - Made of passive elements
 - Resistors
 - Inductors
 - Capacitors
 - Mutual inductance
 - Ideal transformers
 - Impedance specified by a positive real rational function
 - Circuit approximates given impedance behavior to a specified accuracy over a specified bandwidth
 - Can build to make antenna dummies and emulators for reflection and transmission tests and measurements

Low-Order Equivalent Circuits

For narrowband modeling

Low-Order Equivalent Circuits for Narrow Bands Near 1st Resonance



Series and Parallel RLC Equivalent Circuits

 As an antenna impedance curve spirals around the Smith chart, there may be points of tangency with constant conductance circles or constant resistance circles

"Tangency" here means location and direction, i.e. curvature sense

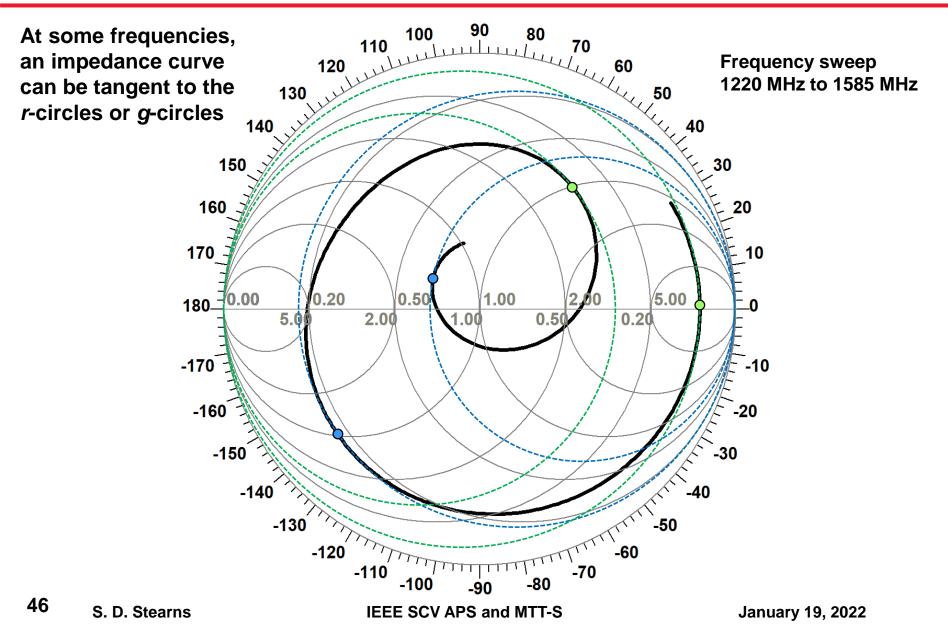
- Each tangency corresponds to a 3-element RLC equivalent circuit
 - > Resistance circle tangency $\Rightarrow \frac{dR}{df} = 0 \Rightarrow$ a series RLC circuit

> Conductance circle tangency $\Rightarrow \frac{dG}{df} = 0 \Rightarrow$ a parallel RLC circuit

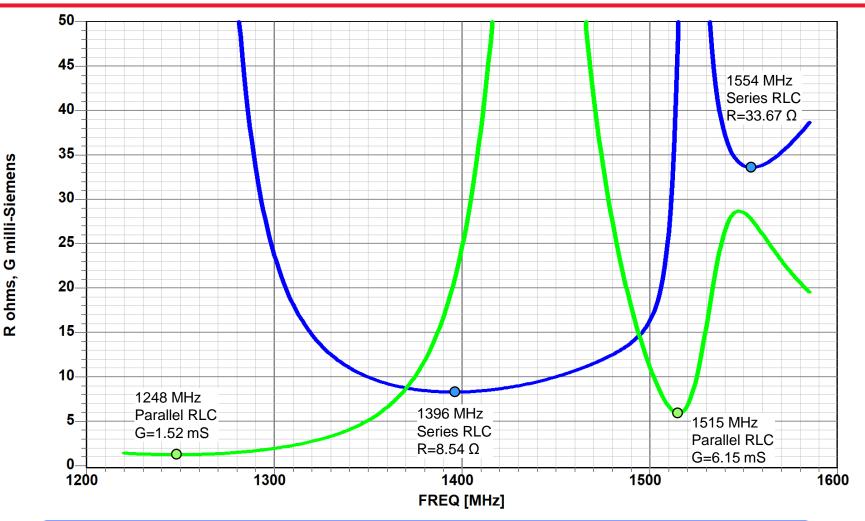
- An antenna can have many narrowband RLC equivalent circuits at different frequencies, one for each tangency
- R-circle and G-circle tangencies may alternate but don't have to

The resonant frequencies of such equivalent circuits don't equal, or imply the existence of, antenna resonant frequencies!

Impedance Tangencies of GPS Antenna



Best Series/Parallel RLC Equivalent Circuits



The best series/parallel RLC approximations occur at *r*-circle or *g*-circle tangencies, which occur at *R* and *G* minima, not at resonances.

47

IEEE SCV APS and MTT-S

Conditions for Reactance and Susceptance Minima

From the Poisson/Schwarz integrals

$$\frac{dR(\omega)}{d\omega} = 0 \qquad \Leftrightarrow \qquad \int_{0}^{\infty} \frac{\omega^{2}}{u^{2} - \omega^{2}} \left(\frac{dX(u)}{du}\right) du = X(0)$$

and

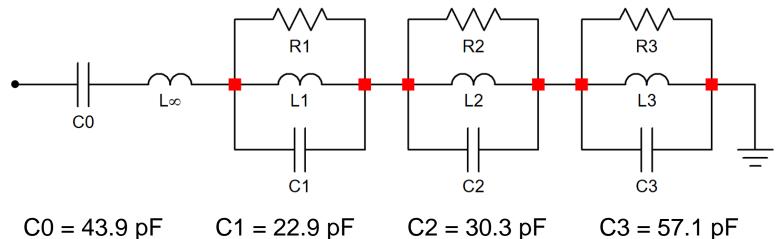
Susceptance, not decibel

$$\frac{dG(\omega)}{d\omega} = 0 \qquad \Leftrightarrow \qquad \int_{0}^{\infty} \frac{\omega^{2}}{u^{2} - \omega^{2}} \left(\frac{dB(u)}{du}\right) du = B(0)$$

Defective Equivalent Circuits

Models vs equivalent circuits Ad hoc Unrealizable Problematic stabililty

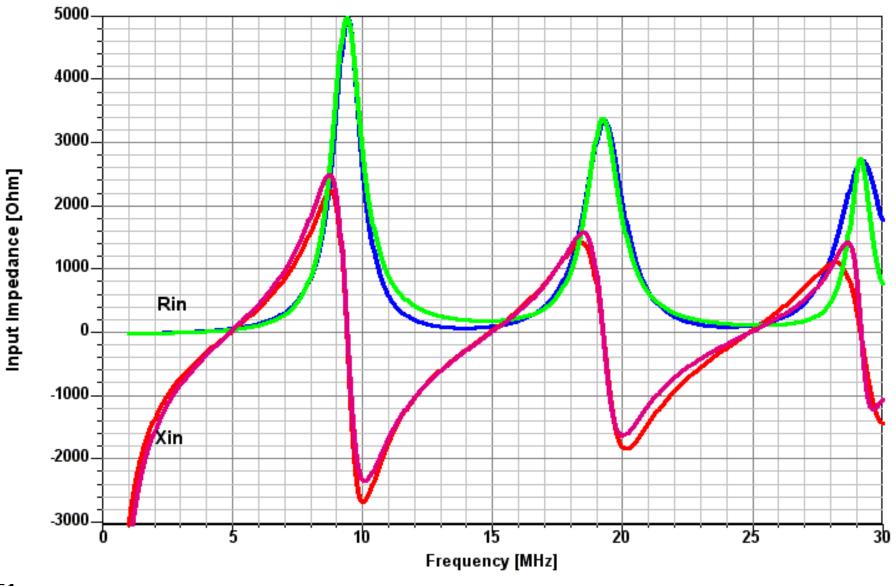
Foster's 1st Form, Modified for Small Losses



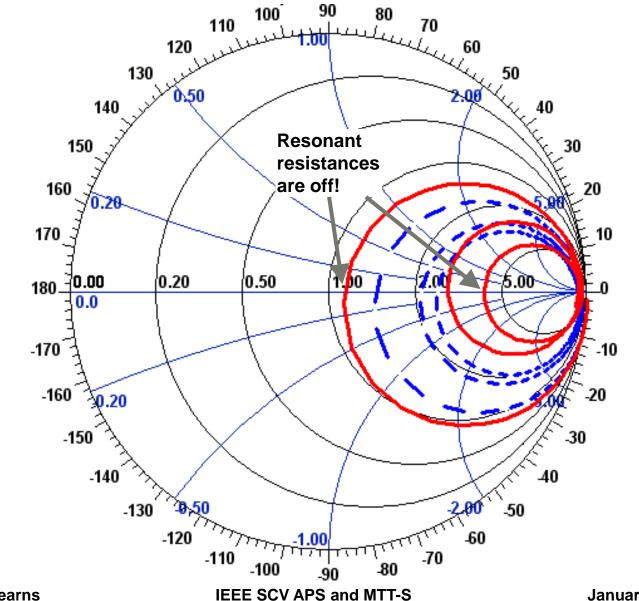
 $L\infty = 4.49 \text{ mH} \qquad L1 = 12.5 \text{ mH} \qquad L2 = 2.26 \text{ mH} \qquad L3 = 522 \text{ nH} \\ R1 = 4,970 \Omega \qquad R2 = 3,338 \Omega \qquad R3 = 2,702 \Omega$

- Ramo, Whinnery, and Van Duzer, Fields and Waves in Communication Electronics, Wiley, 1965. Section 11.13
 - Tang-Tieng-Gunn (1993)
 - Hamid-Hamid (1997)
 - Rambabu-Ramesh-Kalghatgi (1999)
- Fits dipole impedance better near antiresonances, worse near resonances

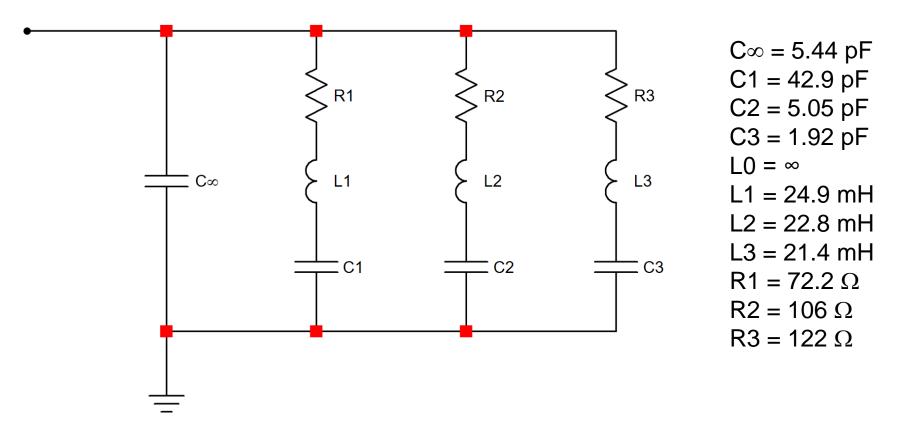
Accuracy of Hamid & Hamid's Equivalent Circuit



Accuracy of Hamid & Hamid's Equivalent Circuit

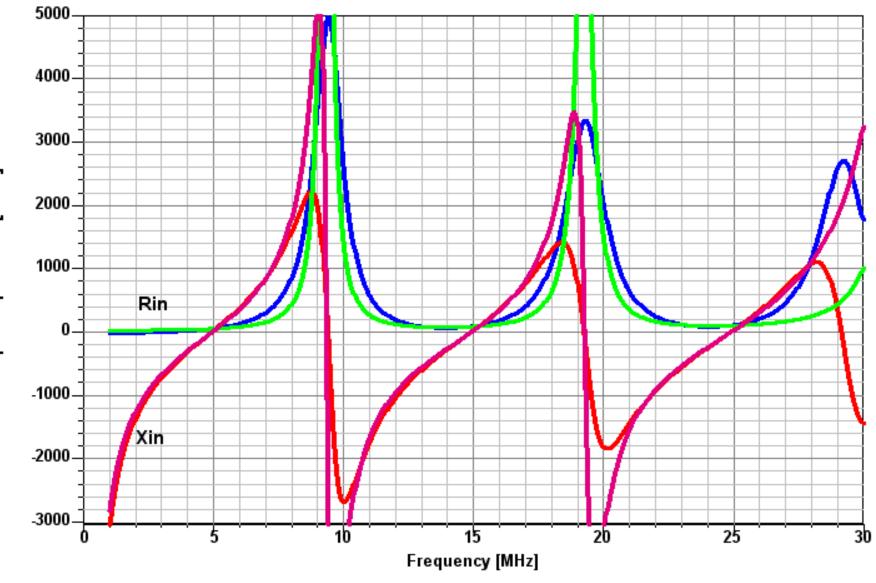


Foster's 2nd Form, Modified for Small Losses



- Fits dipole impedance better near resonances, worse near antiresonances
- McKinley et al. (2012) used similar topology for circular loop antennas

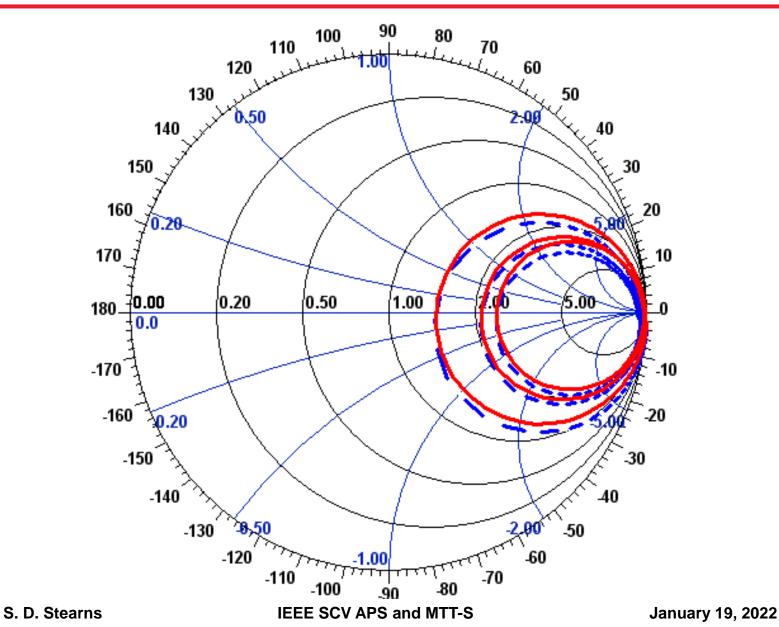
Accuracy of Foster's 2nd Form With Small Losses



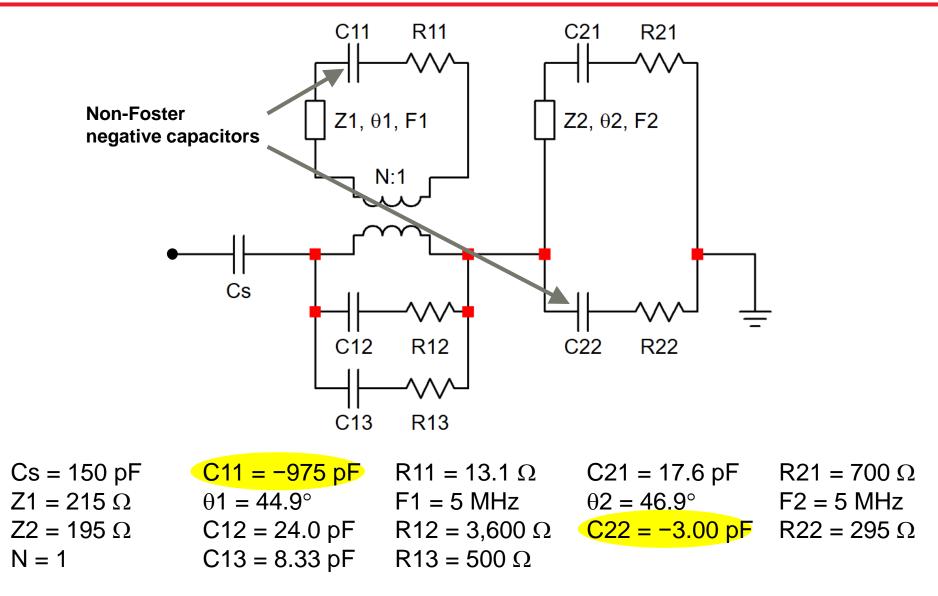
54 S. D. Stearns

IEEE SCV APS and MTT-S

Accuracy of Foster's 2nd Form With Small Losses

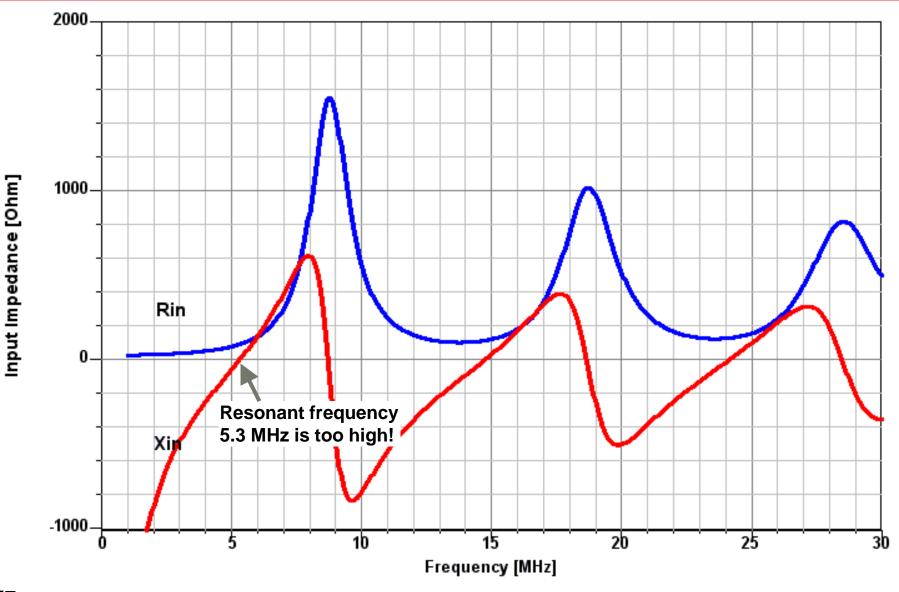


Long, Werner, & Werner's Broadband Model (2000) Frequency Scaled to $f_0 = 5$ MHz, $\Omega' = 7.8$



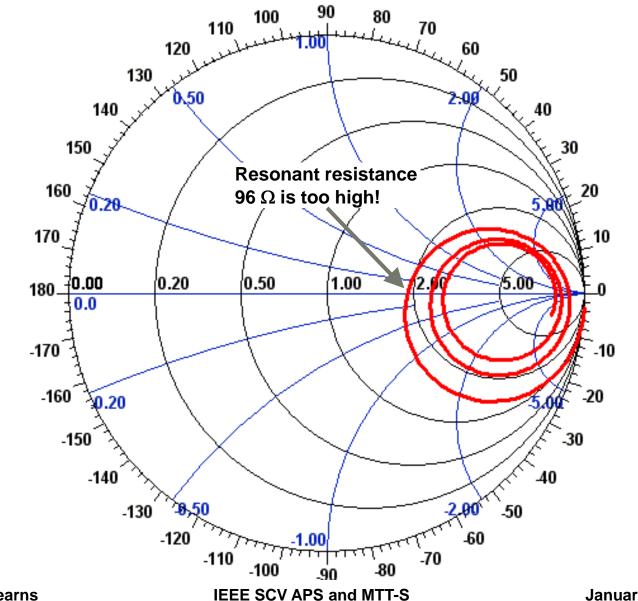
56 S. D. Stearns

Accuracy of Long, Werner, & Werner's Model

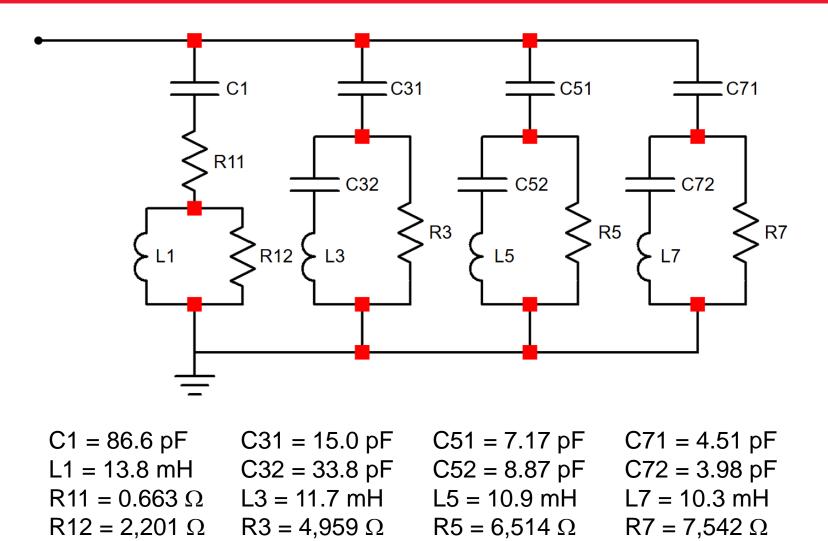


IEEE SCV APS and MTT-S

Accuracy of Long, Werner, & Werner's Model

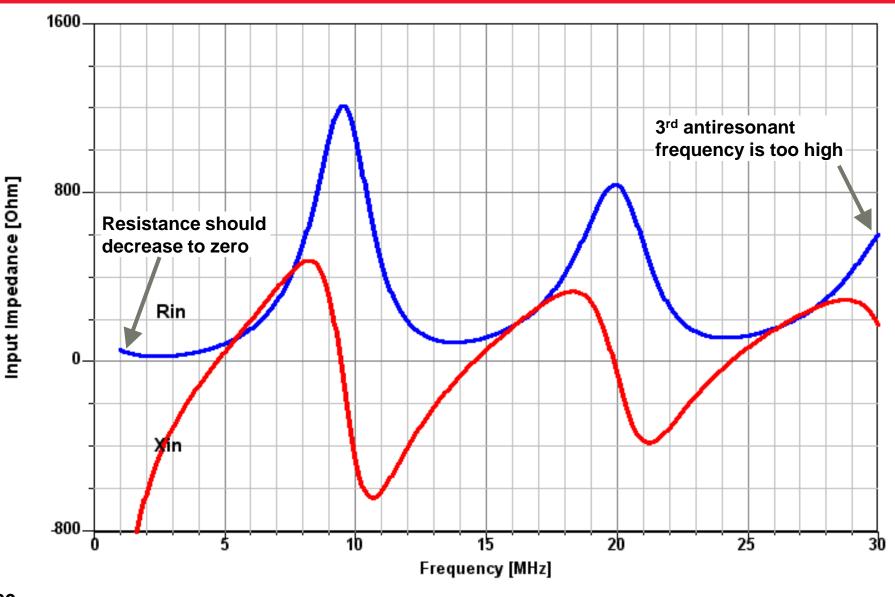


Streable & Pearson's Broadband Equivalent Circuit Frequency Scaled to $f_0 = 5$ MHz, $\Omega' = 10.6$



59

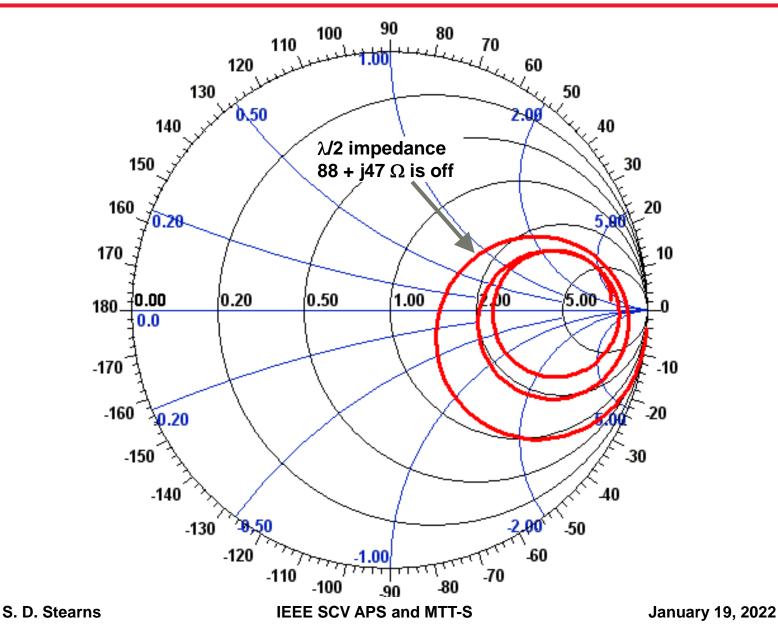
Accuracy of Streable & Pearson's Equivalent Circuit



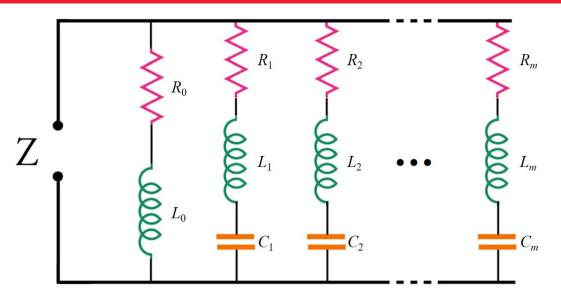
60 S. D. Stearns

IEEE SCV APS and MTT-S

Accuracy of Streable & Pearson's Equivalent Circuit



McKinley et al. Circular Loop Antenna Model



- McKinley et al. (2012) broadband model for large circular loop antennas derived from analyses of Storer (1955) and Wu (1962)
- Circuit topology similar to Foster's 2nd form with loss
- Absence of capacitor in 1st stage puts admittance pole near origin and antiresonance occurs below resonance
- Model is unrealizable because elements are functions of frequency, not constants
- Assumed incorrectly that each current expansion function corresponds to a single system mode and natural frequency, thereby confusing expansion functions with modes
- Moreover, the modes of circular loop antennas were already solved by R.F. Blackburn (1976)

A.F. McKinley, *et al.*, "The Analytical Basis for the Resonances and Anti-Resonances of Loop Antennas and Meta-Material Ring Resonators," *J. Applied Physics*, vol. 112, no. 9, Nov. 2012. J.E. Storer, "Impedance of Thin-Wire Loop Antennas," *Transactions of the AIEE*, vol. 75, no. 5, pp. 606-619, Nov. 1956.

T.T. Wu, Theory of the Thin Circular Loop Antenna, J. of Mathematical Physics, vol. 3, no. 6, pp. 1301-1304, Nov-Dec. 1962.

R.F. Blackburn, Analysis and Synthesis of an Impedance-Loaded Loop Antenna Using the Singularity Expansion Method, Ph.D. dissertation, U. Mississippi, ADA033089, USAF, Nov. 1976.

Problematic "Equivalent Circuits"

- Antenna models that use non-passive elements, such as square-law resistors, R(f) = Rf², are active and therefore unrealizable and/or problematic with respect to stability
 - > Witt (1995)
 - Long, Werner, and Werner (2000)
 - Rudish and Sussman-Fort (2002)
 - Aberle and Romak (2007)
 - Karawas and Collin (2008)
 - McKinley, White, Maksymov, and Catchpole (2012)
- Such models are mathematical representations of impedance but should not be called "equivalent circuits"
- The term "equivalent circuit" is reserved for passive, realizable circuit models of impedance

Comparison of Antenna Equivalent Circuits by the author, Pacificon 2003, 2007

Antenna Impedance Model	Approximation Accuracy	n Realizable Equivalent Circuit Darlington Element Types		Maximum Frequency Range		
Series RLC	fair	yes	yes	R, L, C	P, L, C 0.94 f_0 to 1.05 f_0	
Witt model	fair	no	no	<i>R</i> (<i>f</i>) and TL stub	0.6 <i>f</i> ₀ to 1.2 <i>f</i> ₀	
Chu 3-Element	good	yes	yes	R, L, C	0.90 f ₀ to 1.08 f ₀	
Tang-Tien-Gunn 4-Element	excellent	yes	yes	R, L, C	DC to 1.4 <i>f</i> ₀	
Schelkunoff 4-Element	excellent	yes	yes	<i>R,L,C</i> ,TL	DC to 1.4 <i>f</i> ₀	
Author's 5-Element	excellent	yes	yes	R, L, C	DC to 1.4 <i>f</i> ₀	
Fosters 1 st Form with small losses	poor, best near antiresonances	yes	no	R, L, C	no limit	
Fosters 2 nd Form with small losses	poor, best near resonances	yes	no	R, L, C	no limit	
Long-Werner-Werner	fair	no	no	<i>R, C</i> , TL	5 octaves	
Streable-Pearson	good	yes	no <i>R, L, C</i>		no limit	
Author's Broadband	excellent	yes no		<i>R, L,</i> C	no limit	
Schelkunoff TL cascade	fair	yes	yes	R, L, C, TL	limited	
Spherical TE-TM modes	excellent	yes SCV APS and MI	no	<i>R, L,</i> C	no limit uary 19, 2022	

Vibration Theory of Bells

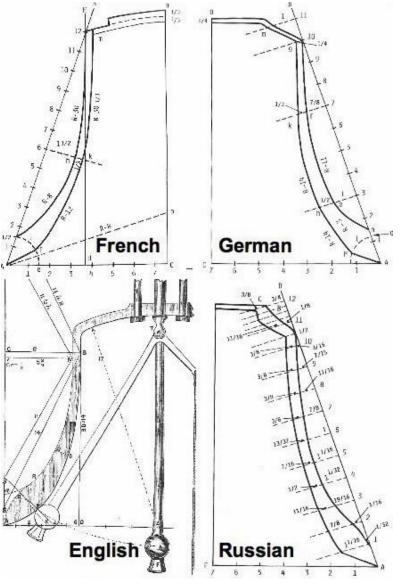
A Brief Interlude

Bells

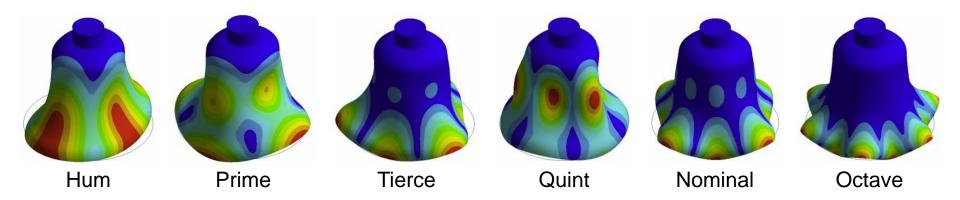
- Large bells are found in churches, cathedrals, and monasteries, and public buildings
- Weights range from 300 lbs to 202 (possibly 300) tons

Tsarsky Kolokol III (Royal Bell 3), Kremlin

Bell Shapes Vary by Foundry and Country



Vibration Modes Computed by FEM (ANSYS)



- A bell's sound is not simple; transient response has early and late parts
 - Early response is rough, discordant
 - Late response has many tones (modes), each with different decay rate
 - <u>https://www.gregniemeyer.com/tsarsky</u>
 - Bells have at least five audible "partial" tones
 - Hum: The lowest partial, one octave below Prime
 - Prime: The main partial, one octave above Hum
 - Tierce: A minor third (6:5) above Prime
 - Quint: A perfect fifth (3:2) above Prime
 - Nominal: One octave (2:1) above Prime
 - The final late tone, after decay, is pure, sinusoidal steady state
- S. D. Stearns

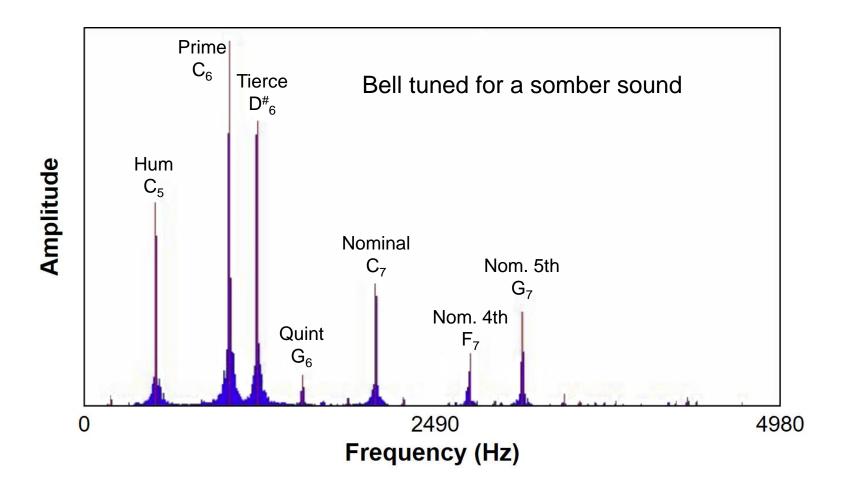
68

IEEE SCV APS and MTT-S

Bells are Tuned at the Foundry

- Formerly done by hammer and chisel, using ear and tuning fork
- Now done by vertical lathe and spectrum analyzer

Example Spectrum After Tuning

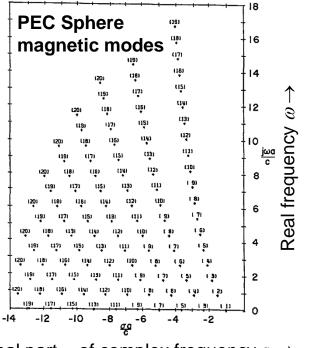


D. Bartocha and C. Baron, "... Bells' Tone," Archives of Foundry Engineering, Oct 2016.

Universal Equivalent Circuits

For all antennas Over any bandwidth

Antennas Ring at Many Frequencies (Like Bells)



Real part σ of complex frequency $s \rightarrow$

PEC elect				120) 120)		(17) (17) (16)	16	
120		200 (150	ເງຈົາ ເງລາ		(15) (14)	14		
		ເງລໍາ 50່າ	ເນຍ ເນຍ	(15) (15)		1131 1121	12	$\hat{\epsilon}$
	ເຊຍາ ເຊຍາ	1181 (17)	ពរត្ រេទូរ រេទូរ	លុម លុម លុម		เต็ นัก	10	⊲≌ Real frequency <i>ω</i> –
ະໜີ ເໜືອ ເໜືອ	191 (17	•	ង ពុទ	3 II	, រដ្ ប្រេត	(8) (8)	8	enpe
ເວັດາ ເກືອນ ເມືອນ	1173 31 1163	ពរុទ្ធ ពរុទ្ធរ	1130 1121	1101 1111	(8) (9)	ι 7) (β)	6	al fre
ີ ເຊັ່ງ ເຊື່ອງ ເຊື່ອງ	•	•	150 110 1 110	(9) • •	(17) (15)	ເຼຣາ ເພ	4	Re
1201 IL01 IL0	1160 CI	•	, (1 6)	•	נים ני		2	
190 117 1200 1181 4 -12	-10	•	_	•	۱ <u>۵</u> ۱ ۵۱ (۱۱) -4	-2	† o	
al par	t σ	of c	•	olex	fre	quen	су	$s \rightarrow$

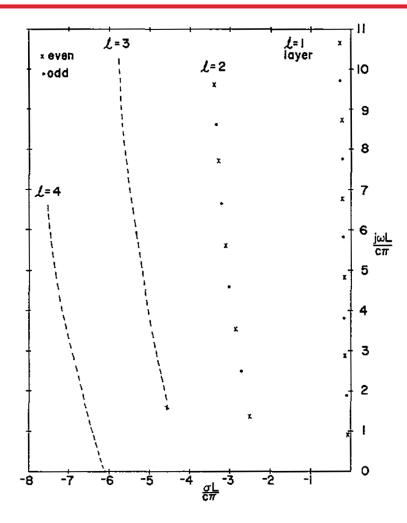
 Continuous electromagnetic structures (antennas) have early and late responses like bells

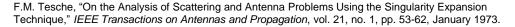
- An impulse of voltage or current applied at a point on the structure causes currents to build up everywhere on the structure
- Impedance resonances are determined by how modal currents sum
- S. D. Stearns

72

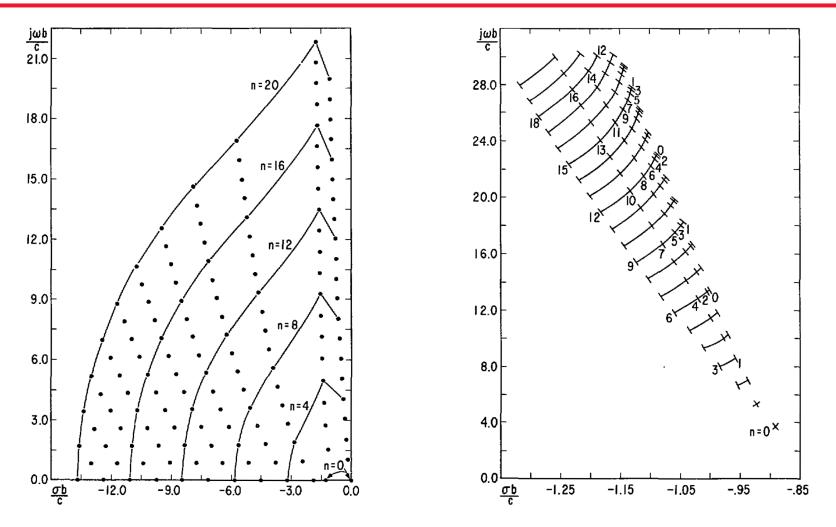
IEEE SCV APS and MTT-S

Dipole and Monopole Natural Frequencies (Admittance Poles)





Circular Loop Antenna Natural Frequencies (Admittance Poles)



R.F. Blackburn, *Analysis and Synthesis of an Impedance-Loaded Loop Antenna Using the Singularity Expansion Method*, Ph.D. dissertation, U. Mississippi, May 1976. R.F. Blackburn and D.R. Wilton, "Analysis and Synthesis of an Impedance-Loaded Loop Antenna Using the Singularity Expansion Method," *IEEE Transactions on Antennas and Propagation*, vol. 26, no. 1, pp. 136-140, January 1978.

Meromorphic Functions

• A function f (s) is meromorphic if

- It can be expressed as a ratio of two analytic functions
- Singularities are ordinary poles (infinity excepted)
- Poles are isolated (poles have no accumulation/cluster points)

Consider meromorphic immittance functions that satisfy

- All poles lie in the left half of the complex s-plane
- $\succ f^*(s) = f(s^*)$
- > Re{ $f(j\omega)$ } is non-negative
- > All poles of f(s) are simple

Examples

- > P.r. rational functions: P(s)/Q(s)
- > Complex exponentials: exp(s), exp(-s)
- Trigonometric functions: sin(s), cos(s), tan(s)
- Hyperbolic functions: sinh(s), cosh(s), tanh(s)
- Many special functions of mathematical physics

75

Mittag-Leffler Theorem

Mittag-Leffler states a convergent series for f (s)

$$f(s) = f(0) + \lim_{N \to \infty} \sum_{n=-N}^{N} \left(\frac{A_n}{s - s_n} - \frac{A_n}{0 - s_n} \right)$$

= $f(0) + \lim_{N \to \infty} \left(P_N(s) - P_N(0) \right)$

where

$$P_N(s) = \sum_{n=-N}^{N} \frac{A_n}{s - s_n}$$

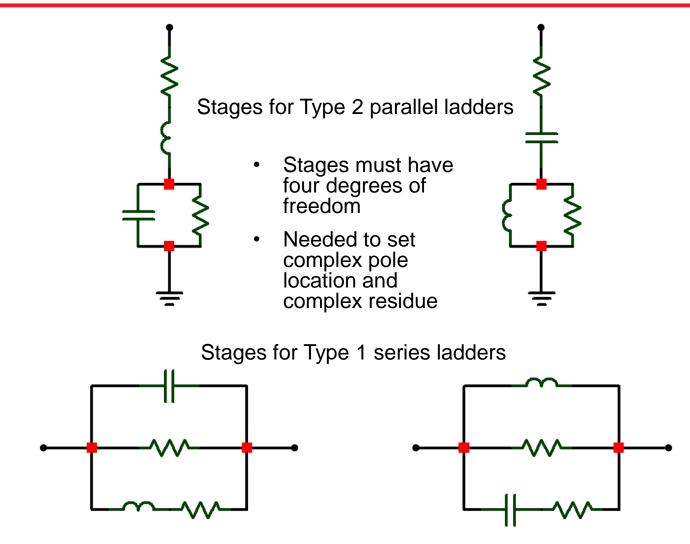
Yields a design recipe for a network that realizes f (s)

- > Step 1: Determine the poles of s_n of f(s)
- > Step 2: Determine the residues A_n

$$A_n = \lim_{s \to s_n} (s - s_n) f(s)$$

76 S. D. Stearns

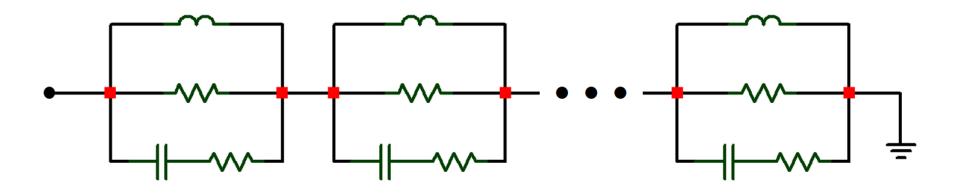
Universal Equivalent Circuits – Four Kinds of Stages



M. K. Zinn, "Network Representation of Transcendental Impedance Functions," *Bell System Technical Journal*, vol. 31, no. 2, pp. 378-404, March 1952. S. A. Schelkunoff, "Representation of Impedance Functions in Terms of Resonant Frequencies," *Proceedings of the IRE*, vol. 32, no. 2, pp. 83-90, February 1944.

77

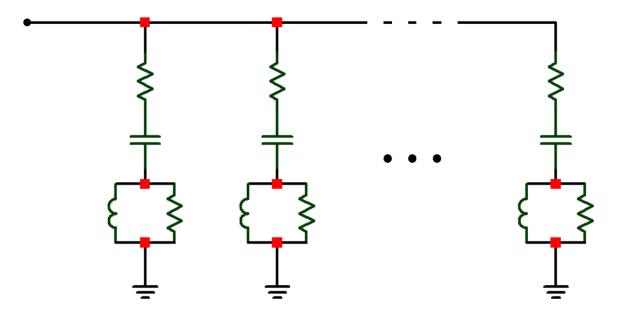
Universal Equivalent Circuit – Type 1b



- Type 1b ladder based on impedance poles (admittance zeros)
- Similar to Foster's 1st form but with two resistors per stage
- Each stage gives a conjugate pair of poles of impedance
- Ladder truncation to finite length justified by Mittag-Leffler
- Chu's TE₁ equivalent circuit is a special case (one stage)
- Circuit can be converted to single-resistor form by Darlington synthesis
- S. D. Stearns

78

Universal Equivalent Circuit – Type 2b



- Type 2b ladder based on admittance poles (impedance zeros)
- Similar to Foster's 2nd form but with two resistors per stage
- Each stage gives a conjugate pair of poles of admittance
- Ladder truncation to finite length justified by Mittag-Leffler
- Chu's TM₁ equivalent circuit is a special case (one stage)
- Circuit can be converted to single-resistor form by Darlington synthesis
- S. D. Stearns

79

General Applicability to Antennas and Devices

- Universal Equivalent Circuits given here represent <u>all</u> immittance functions that are meromorphic
- Claim: UECs represent the impedance functions of <u>all</u> passive linear antennas and microwave devices
- Reasons
 - Characterization by analysis
 - Impedances are expressed in terms of special functions
 - Almost all special functions of mathematical physics are meromorphic
 - Meromorphic functions are closed under sums, products, quotients, and powers
 - Characterization by numerical CEM or measurement
 - Impedance is determined by signal processing algorithms applied to impulse response or transfer function data
 - Prony and matrix pencil methods determine poles and residues successfully

The existence of exceptions is not ruled out, but none are known.

Mathematical Physics: Entire & Meromorphic Functions

Function	Symbol	Function	Symbol		
Airy functions	Ai (z), Bi (z)	haversine	hav (z)		
Airy function derivatives	Ai' (z), Bi' (z)	hyperbolic cosine	$\cosh(z)$		
Anger function	$\boldsymbol{J}_{n}\left(z ight)$	hyperbolic sine	$\sinh(z)$		
Barnes G-function	$G\left(z ight)$	Jacobi elliptic functions	cd (u, k) , cn (u, k) , cs (u, k) , dc (u, k) , dn (u, k) , ds (u, k) nd (u, k) , nc (u, k) , ns (u, k) , sd (u, k) , sc (u, k) , sn (u, k)		
bei	$bei_n(z)$	Jacobi theta functions	$\vartheta_n(z,q)$		
ber	$\operatorname{ber}_n(z)$	Jacobi theta function derivatives	$\vartheta'_n(z,q)$		
Bessel function of the first kind	$J_{n}\left(z ight)$	Mittag-Leffler function	$E_{\alpha}(z)$		
Bessel function of the second kind	$Y_n(z)$	modified Struve function	$\mathcal{L}_{n}(z)$		
Beurling's function	B(z)	Neville theta functions	$\vartheta_{c}(u), \vartheta_{d}(u), \vartheta_{n}(u), \vartheta_{s}(u)$		
cosine	$\cos(z)$	Shi	Shi (z)		
coversine	covers (z)	sine	sin (z)		
Dawson's integral	F(z)	sine integral	Si (z)		
erf	$\operatorname{erf}(z)$	spherical Bessel function of the first kind	$j_n(z)$		
erfc	$\operatorname{erfc}(z)$	Struve function	$\boldsymbol{H}_{n}\left(z ight)$		
erfi	erfi (z)	versine	vers (z)		
exponential function	$e^z = \exp(z)$	Weber functions	$\boldsymbol{E}_{n}\left(\boldsymbol{z} ight)$		
Fresnel integrals	C(z), S(z)	Wright function	$\phi\left(ho,eta;z ight)$		
gamma function reciprocal	1 / Γ (z)	Landau's xi-function	Ξ (z) related to Rieman's zeta function ζ (z)		
generalized hypergeometric function	$_{p}F_{q}(a_{1},,a_{p};b_{1},,b_{q};z)$				

Miscellaneous Examples Demonstrating UEC Theory

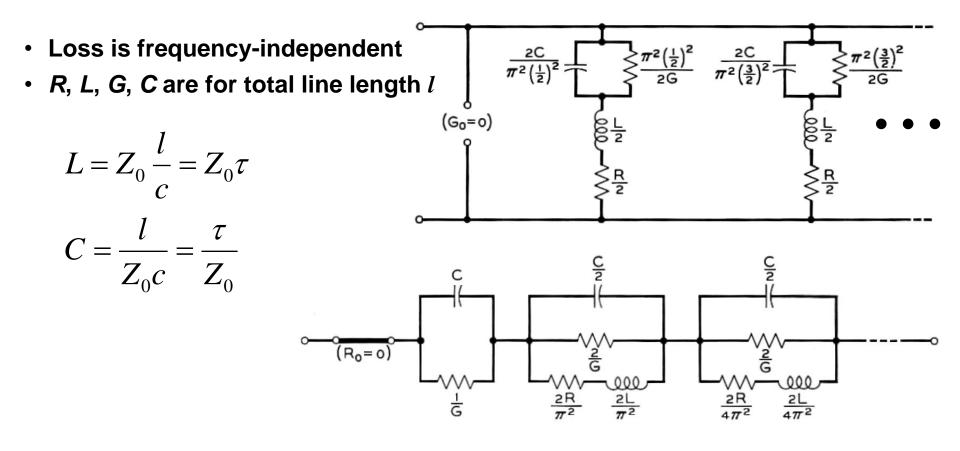
Open stub Shorted stub Thin-wire dipole Small tuned loop Large untuned loop (2 circuits) VHF-UHF discone antenna Fat VHF dipole

Examples 1 & 2: Transmission Line Devices

Open and shorted stubs

Open Stub Equivalent Circuits – Types 1a and 2a

$$Z_{in} = Z_0 \operatorname{coth} \gamma l = Z_0 \operatorname{coth} (\alpha l + j\beta l)$$



IEEE SCV APS and MTT-S

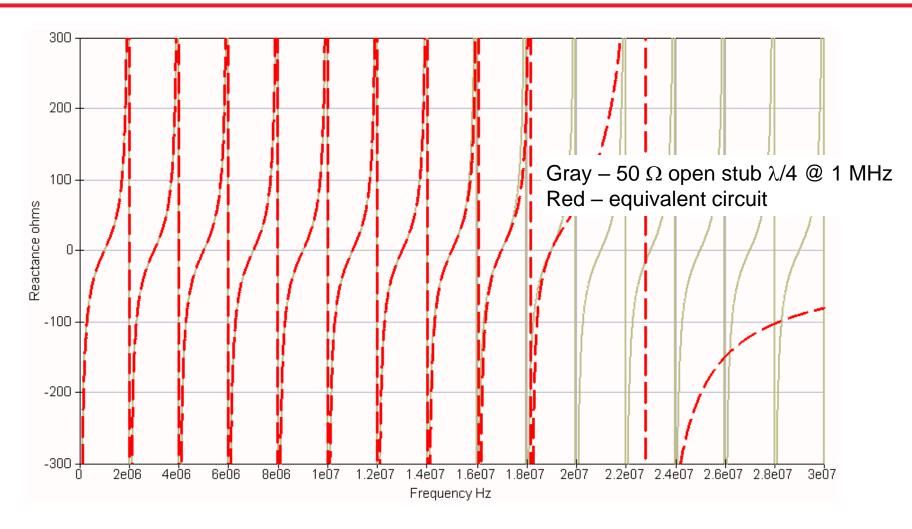
January 19, 2022

Numerical Evaluation Open Stub Equivalent Circuit

50 Ω open stub $\lambda/4$ @ 1 MHz

P1 · · · · · · · · · · · · · · · · · · ·	C2 1 C=C2 L2 L=L1	C3. C=C3. L3	 C=C4. 	C5 C=C5 L5 L=L1	.C6 .C=C6 .L6 .L=L1	 C7. C=C7. L7 L=L1 .			C10 C=C10 L10 L10 L=L1	Cinfinity C=Cinf
P2. Num=2 Z=50 Ohm Line6. Z=50.0 L=75. Sparameter simulation SP1 Type=lin Start=10 kHz Stop=30 MHz Points=3000		1E08 Ohm	L1=L/ C=50 C1=8 C1=8 C2=8 C2=8 C3=8 C4=8 C4=8 C4=8 C6=8 C7=8 C7=8 C7=8 C8=8 C7=8 C7=8 C7=8 C7	50865E-06		$ = Z_0 \tau . $	Equation Eqn2 Z=stoz(S,50 reactance1 reactance2	=imag(Z[1,1]	

Open Stub Equivalent Circuit from 0 to 19 MHz



$$Z_{in} = Z_0 \tanh \gamma l = Z_0 \tanh (\alpha l + j\beta l)$$

- Loss is frequency-independent
- R, L, G, C are for total line length l

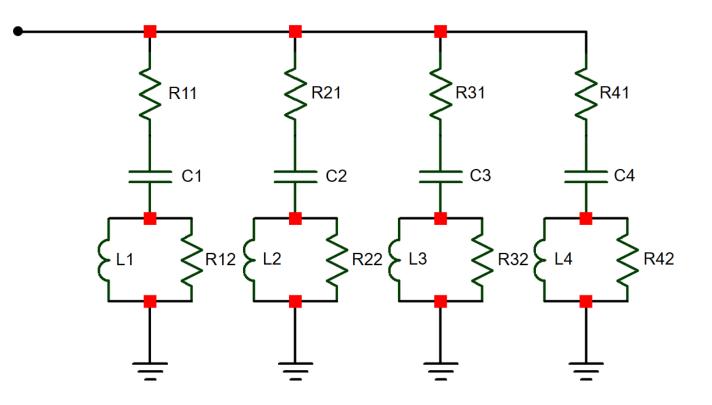
$$L = Z_0 \frac{l}{c} = Z_0 \tau$$
$$C = \frac{l}{Z_0 c} = \frac{\tau}{Z_0}$$

Example 3: Thin Wire Dipole

IEEE SCV APS and MTT-S

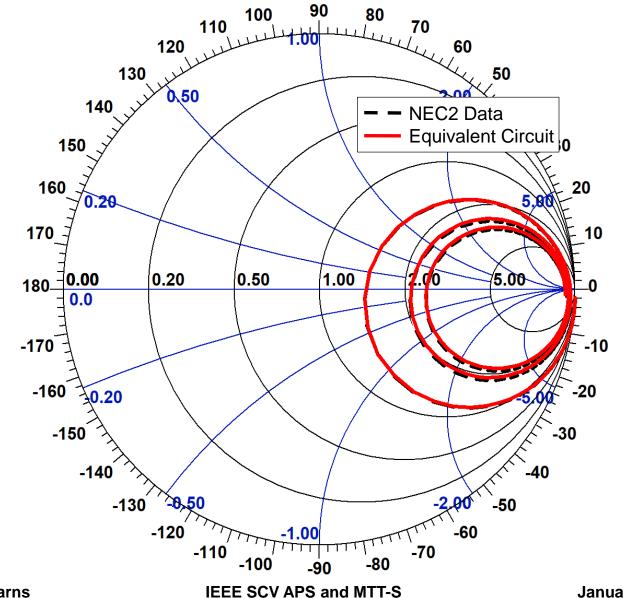
January 19, 2022

98.4-ft Dipole (L/d = 11,200) Type 2b Equivalent Circuit for Zero to 30 MHz



R11 = 5.06Ω R21 = 0Ω R31 = 25.5Ω R41 = 0Ω C1 = 39.9 pFC2 = 4.64 pFC3 = 4.69 pFC4 = 1.68 pFL1 = $27.1 \mu\text{H}$ L2 = $24.9 \mu\text{H}$ L3 = $2.26 \mu\text{H}$ L4 = $24.5 \mu\text{H}$ R12 = $10.1 \text{ k}\Omega$ R22 = $50.1 \text{ k}\Omega$ R32 = $2.68 \text{ k}\Omega$ R42 = $116 \text{ k}\Omega$

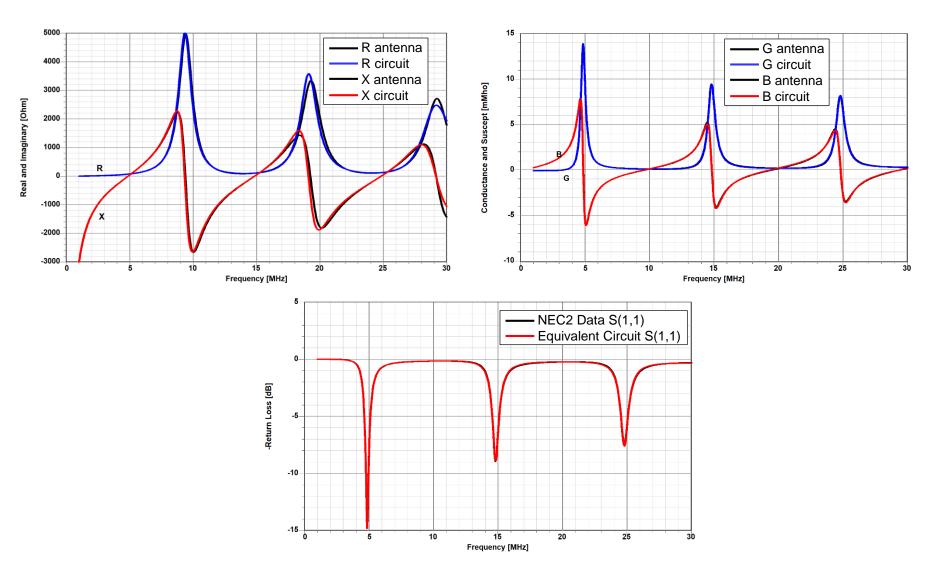
98.4-ft Dipole **Equivalent Circuit Performance from Zero to 30 MHz**



90 S. D. Stearns

January 19, 2022

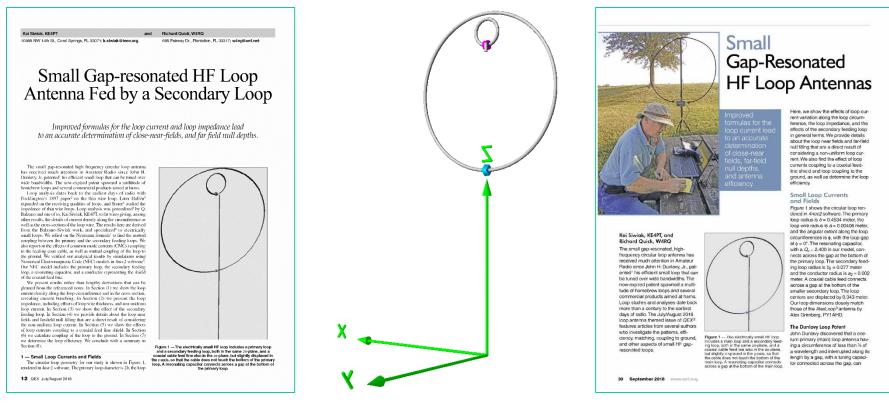
98.4-ft Dipole Equivalent Circuit Impedance



Example 4: Small Tuned Loop

Similar to AlexLoop

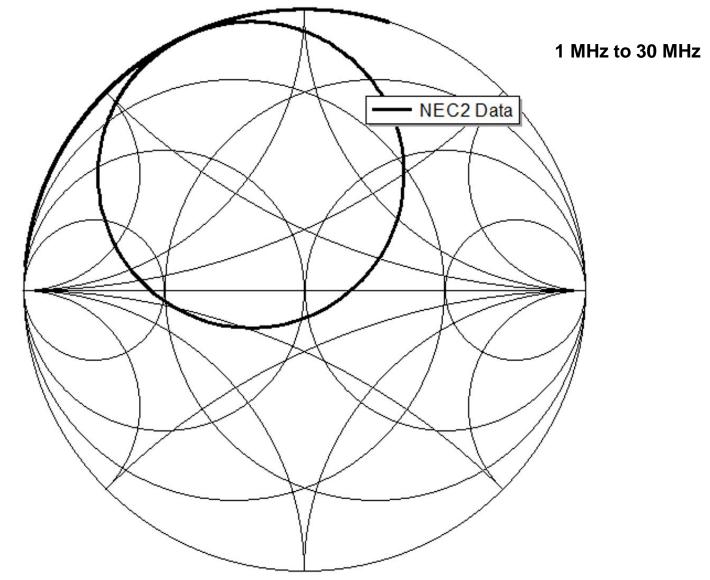
Small Gap-Resonated HF Loop Antenna



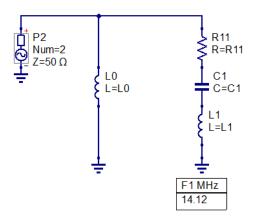
K. Siwiak, KE4PT, and R. Quick, W4RQ, QEX, July/August 2018

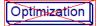
K. Siwiak, KE4PT, and R. Quick, W4RQ, QST, September 2018

Small Gap-Resonated Loop Tuned for 20-Meters



Small Gap Resonated Loop Tuned for 20 Meters Type 2b Equivalent Circuit – Optimization Setup



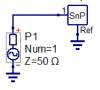


Opt1 Sim=SP1 DE/bor/2/bin|40000|0.95|0.8|50 C1=0...1.17098e-12...1.2e-11 linear L0=0...3.60877e-07...3.6e-06 linear L1=0...0.000108522...1.1e-03 linear R11=0...12.0474...120 linear Mean_Square_Error_S_Mag=124000 MIN Mean_Square_Error_S_Mag=124000 MIN Max_Square_Error_S_Mag=58500 MIN Max_Square_Error_S_Ang=18.9 MIN

equation

Goals

antdata_S_dB File=HF_Loop_Siwiak-Quick_QST_Sep_2018.s1p Ports=1 domain=rectangular interpol=cubic



equation

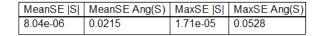
 $\begin{array}{l} Outputs \\ Rant=real((1+S[1,1])/(1-S[1,1]))*50 \\ Xant=imag((1+S[1,1])/(1-S[1,1]))*50 \\ Gant=real((1-S[1,1])/(1+S[1,1]))/50 \\ Bant=imag((1-S[1,1])/(1+S[1,1]))/50 \\ Req=real((1+S[2,2])/(1-S[2,2]))*50 \\ Geq=real((1+S[2,2])/(1+S[2,2]))*50 \\ Geq=real((1+S[2,2])/(1+S[2,2]))*50 \\ \end{array}$

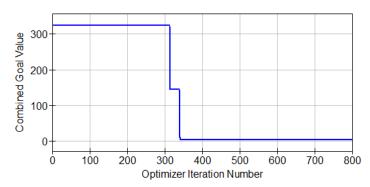
Beq=imag((1-S[2,2])/(1+S[2,2]))/50

F1=1e-06/(2*pi*sqrt(L1*C1))

s-parameter simulation

SP1 Type=lin Start=1 MHz Stop=30 MHz Points=29001





equation

Best_Values C1=1.17098e-12 L0=360.877e-09 L1=108.522e-06 R11=12.0474

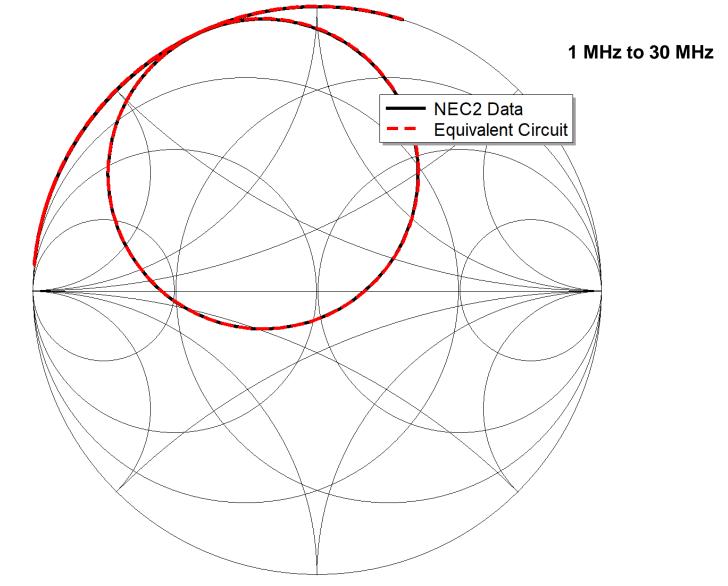
Mean_Square_Error_S_Mag=average(range(mag(S[1,1]-S[2,2])², 1MHz, 30MHz)) Mean_Square_Error_S_Ang=average(range(mag(phase(S[1,1]/S[2,2]))², 1MHz, 30MHz))) Max_Square_Error_S_Mag=max(range(mag(S[1,1]-S[2,2])², 1MHz, 30MHz))) Max_Square_Error_S_Ang=max(range(mag(phase(S[1,1]/S[2,2]))², 1MHz, 30MHz))

95

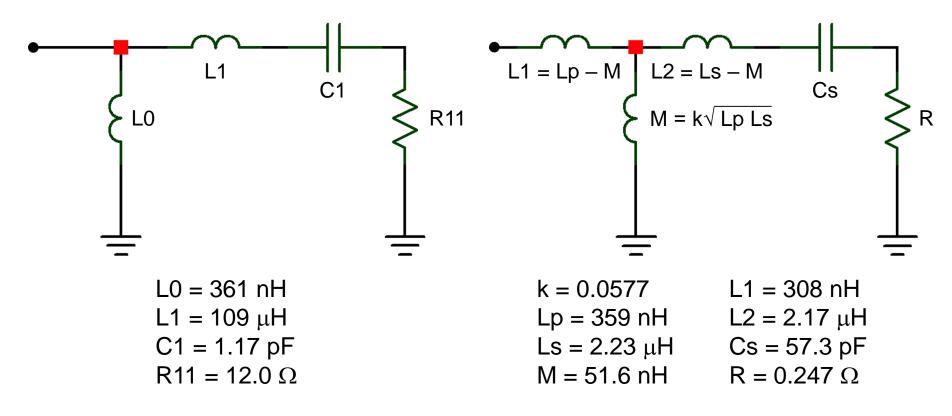
IEEE SCV APS and MTT-S

January 19, 2022

Small Gap-Resonated Loop 4-Element Equivalent Circuit Performance



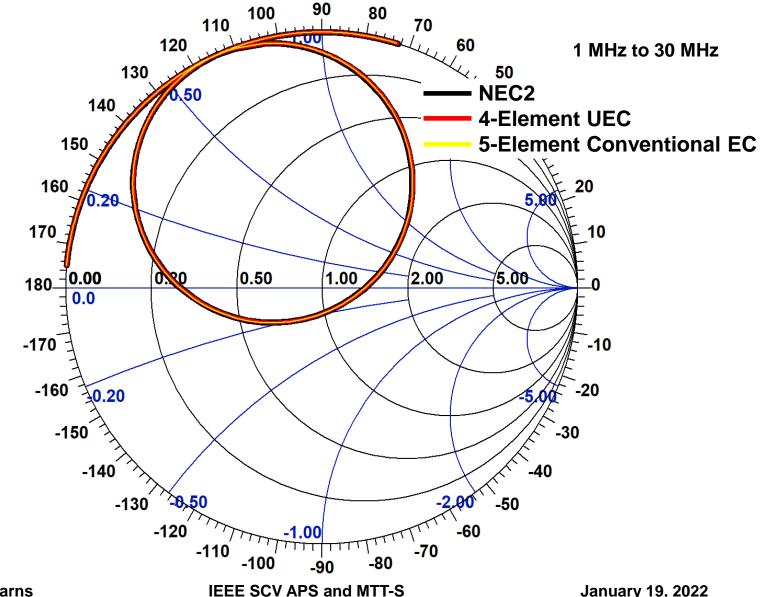
Universal vs Transformer-Coupled Equivalent Circuits



- Physical reasoning gives equivalent circuits that can be more complex than necessary. Minimum complexity is not the goal
- UEC theory gives equivalent circuits of minimal complexity

M.E. Cram, W8NUE, "Small Transmitting Loops: a Different Perspective on Tuning and Determining Q and Efficiency," QEX, July/August 2018. A. Boswell; A.J. Tyler; A. White, "Performance of a Small Loop Antenna in the 3-10 MHz Band," *IEEE Antennas and Propagation Magazine*, April 2005.

Comparison of Two Equivalent Circuits for Coupled Loop Antennas



98 S. D. Stearns

January 19, 2022

Example 5: Large Untuned Loop

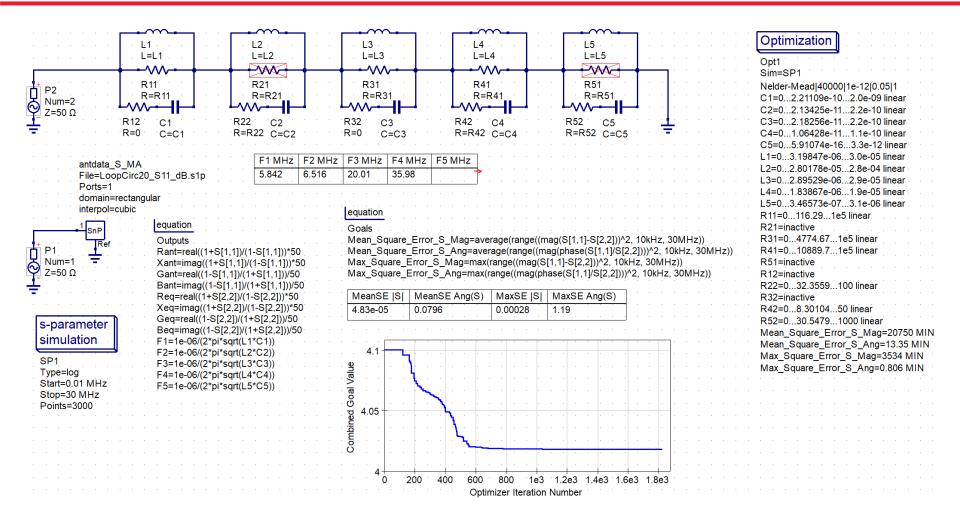
20-meter band single-turn circular loop

20-Meter Single-Turn Circular Loop

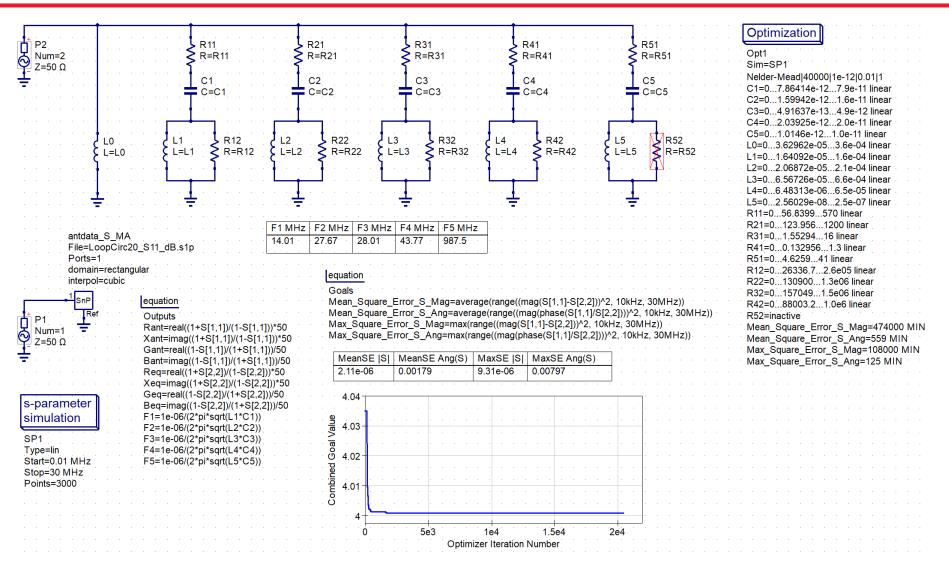
- 4nec2 model: LoopCirc20
- Loop diameter: 23.4 ft
- Wire diameter: AWG #12
- Free space, no ground

У

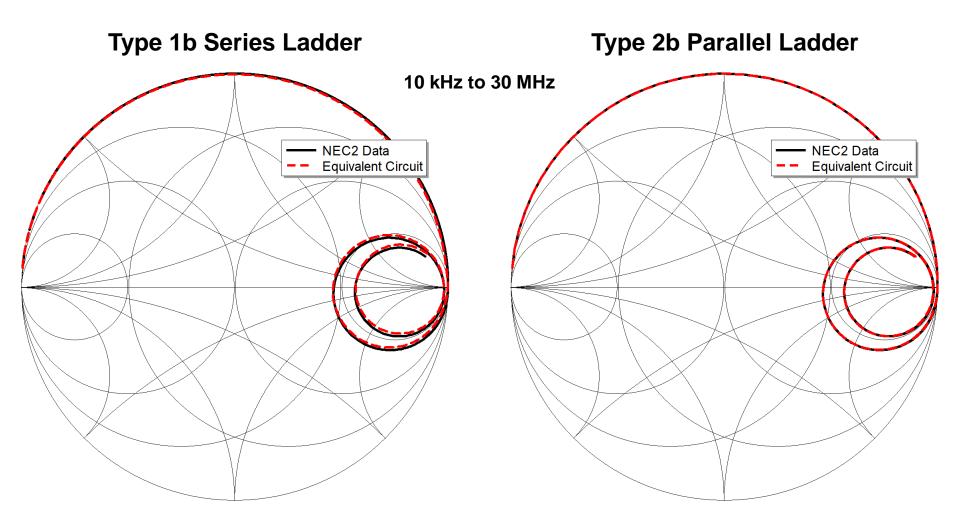
20-Meter Single-Turn Circular Loop Type 1b Equivalent Circuit – Optimization Setup



20-Meter Single-Turn Circular Loop Type 2b Equivalent Circuit – Optimization Setup

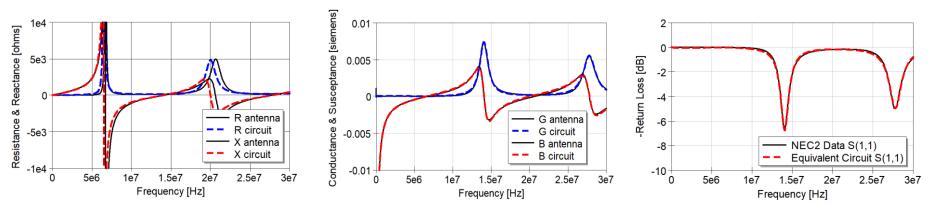


20-Meter Circular Loop Equivalent Circuit Performance

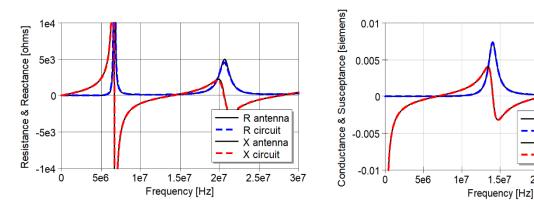


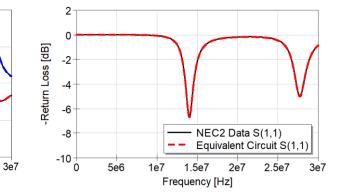
20-Meter Circular Loop Equivalent Circuit Performance

Type 1b Equivalent Circuit



Type 2b Equivalent Circuit





IEEE SCV APS and MTT-S

G antenna

B antenna

2.5e7

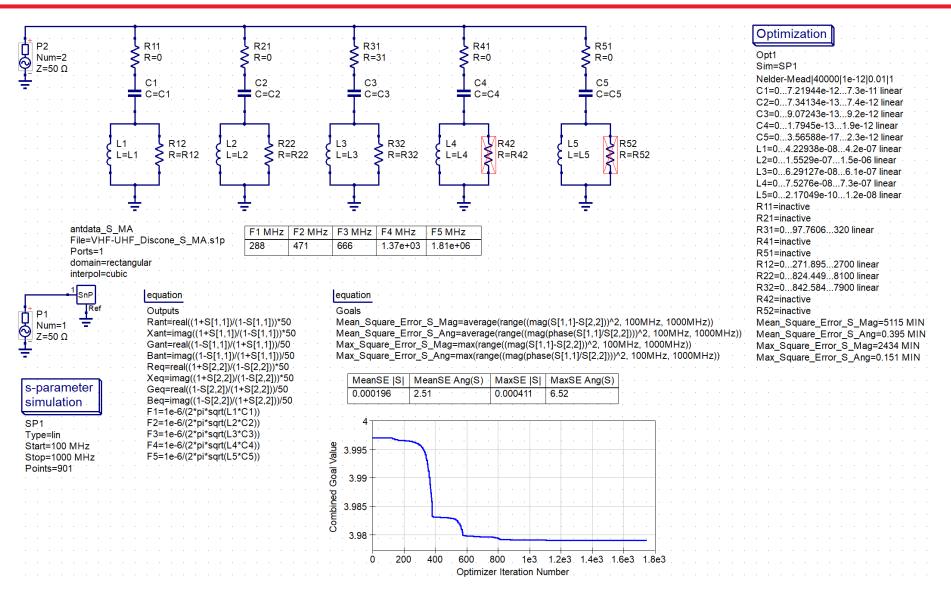
G circuit

B circuit

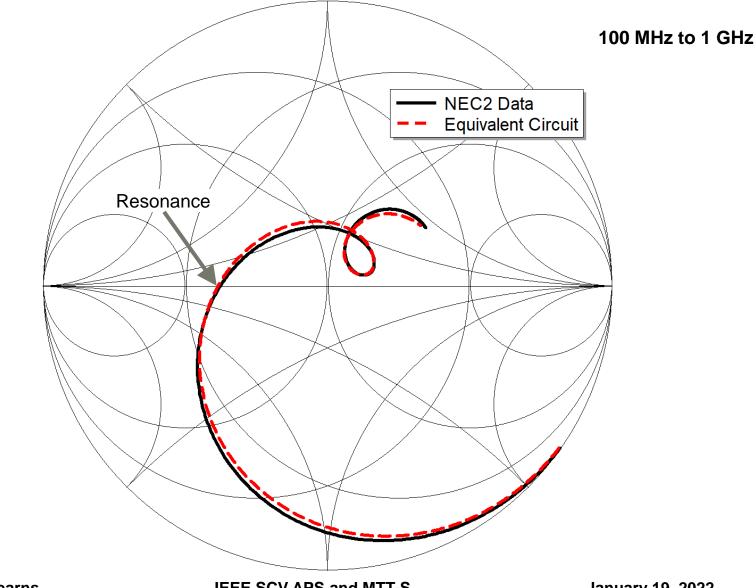
2e7

Example 6: VHF-UHF Discone

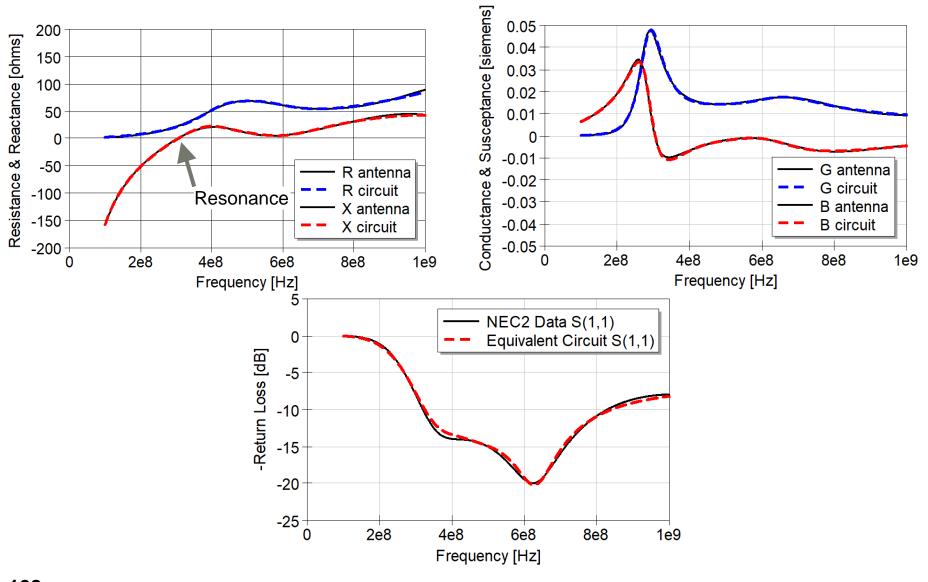
VHF-UHF Discone Broadband Equivalent Circuit – Optimization Setup



Discone Equivalent Circuit Performance



Discone Equivalent Circuit Performance



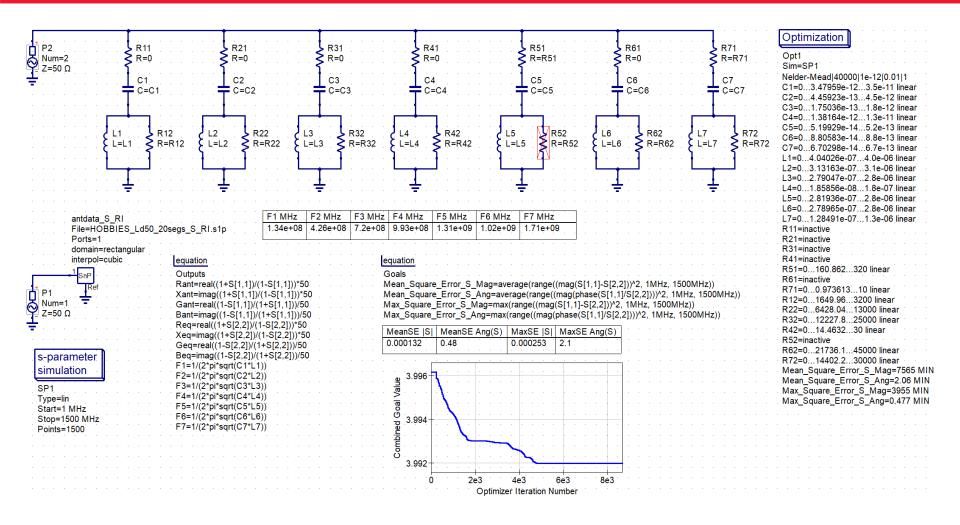
108 S. D. Stearns

IEEE SCV APS and MTT-S

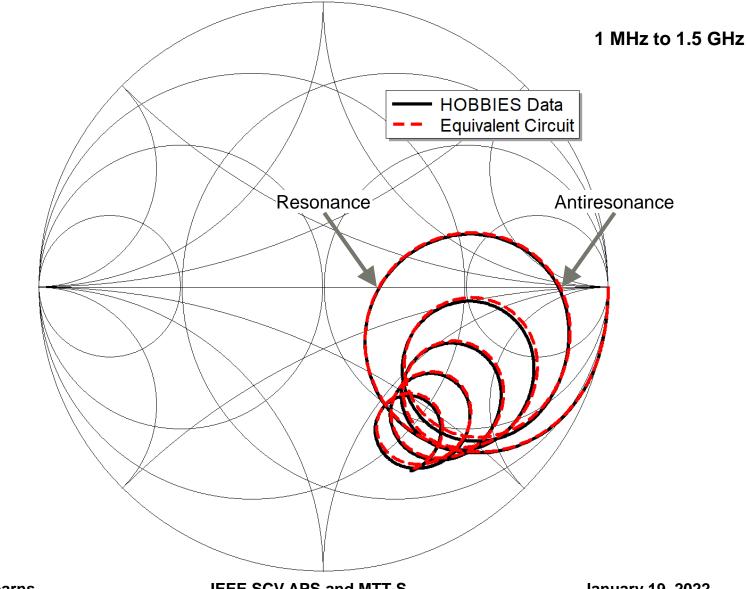
January 19, 2022

Example 7: Fat VHF Dipole L/d = 50

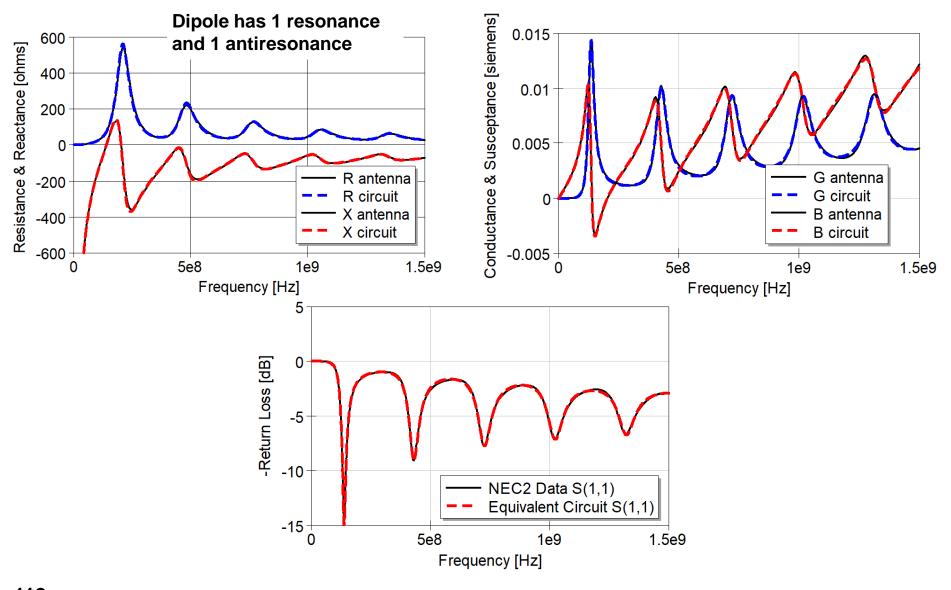
1-Meter Long Dipole Broadband Equivalent Circuit – Optimization Setup



1-Meter Dipole Equivalent Circuit Performance



1-Meter Dipole Equivalent Circuit Performance



S. D. Stearns

IEEE SCV APS and MTT-S

January 19, 2022

Comments on How to Export Impedance Data from CEM Programs to EDA Programs

- CEM programs compute immittance Z or Y data in real and imaginary form as R, X or G, B
- Data should be converted to S data to make a Touchstone file, .s1p or .s2p
- Touchstone allows data in three forms
 - > MA (magnitude-angle)
 - dB (magnitude in dB-angle)
 - RI (real-imaginary)
- For S data near the boundary of the Smith chart, RI and dB are more accurate than MA
- Import data files into an EDA project one of two ways
 - > Use the "Project \rightarrow Add File to Project" command, or
 - Copy/paste the file to a project folder before opening the project

Best results are achieved by importing S data in dB or RI forms and interpolating with a cubic spline interpolator.

Summary and Conclusions

- Immittance (admittance or impedance) of 1-port distributed electromagnetic structures like antennas have broadband lumped-element equivalent circuits
- Antenna impedance can always be represented by a generalized ladder network of just four possible topologies
 - Number of stages depends on desired accuracy of approximation
- Element values may be set by either of two methods
 - Semi-analytical: Compute element values from the poles and residues found by SEM analysis
 - Numerical: Use a circuit optimizer to fit one of four ladder circuits to measured or computed impedance data. Fit a small bandwidth first. Add stages to increase bandwidth

If making a 2-port antenna emulator for non-radiating transmission testing

- Use Darlington synthesis to convert the network to a reactance 2-port with terminating resistor
- Load resistor at Port 2 represents radiation plus loss

Further Reading

- A.D. Yaghjian, "A Simplified Derivation of Causality From Passivity for the Impedance Representation of Transmitting Antennas," *IEEE Trans. Antennas and Propagation*, Jan 2022.
- A.D. Yaghjian, "Physical Unrealizability of a Series Reactance and Resistance of a Passive Causal Input Impedance," *Int. Conf. Electromagnetics in Advanced Applications*, Verona, Italy, Sep 11-15, 2017.
- S. Licul and W.A. Davis, "Unified Frequency and Time-Domain Antenna Modeling and Characterization," *IEEE Trans. Antennas and Propagation*, Sep 2005.
- T.K. Sarkar and O. Pereira, "Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials," *IEEE Antennas and Propagation Magazine*, Feb 1995.
- Y. Hua and T.K. Sarkar, "Matrix Pencil Method for Estimating Parameters of Exponentially Damped-Undamped Sinusoids in Noise," *IEEE Trans. Acoustics, Speech, and Signal Processing*, May 1990.
- C. E. Baum, "The Singularity Expansion Method Background and Developments," *IEEE Antennas and Propagation* Society Newsletter, Aug 1986
- A.G. Ramm, "Theoretical and Practical Aspects of Singularity and Eigenmode Expansion Methods," *IEEE Trans. Antennas and Propagation*, Nov 1980.
- C.E. Baum, "Emerging Technology for Transient and Broad-Band Analysis and Synthesis of Antennas and Scatterers," Proc. IEEE, Nov 1976.
- M.L. Van Blaricum and R. Mittra, "A Technique for Extracting the Poles and Residues of a System Directly from Its Transient Response," *IEEE Trans. Antennas and Propagation*, Nov 1975.
- C.E. Baum, On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems, Interaction Note 88, AFWL, Dec 1971.
- D.C. Youla, "Physical Realizability Criteria," *IRE Trans. Circuit Theory*, Aug 1960.
- M.K. Zinn, "Network Representation of Transcendental Impedance Functions," *Bell System Tech J.*, Mar 1952.
- S.A. Schelkunoff, "Representation of Impedance Functions in Terms of Resonant Frequencies," *Proc. IRE*, Feb 1944.

The End

This presentation incorporating revisions and errata will be archived at <u>https://www.fars.k6ya.org/docs/k6oik</u>