The Joy of Matching

Multi-Frequency, Broadband, Reflectionless, and Active Non-Foster Match Network Design

Steve Stearns, K6OIK

Consulting Engineer Electromagnetic Systems Antennas and RF Design

Technical Fellow, ret. Northrop Grumman Corp. <u>stearns@ieee.org</u> <u>k6oik@arrl.net</u>

1

Abstract

"The Joy of Matching" is a tutorial introduction to the concepts and methods of impedance matching network design. Topics include what impedance is, what impedance functions are, characteristics of passive, active, and antenna impedance functions, the Smith chart, and the advantages and disadvantages of conjugate impedance matching. The author shows how a Smith chart allows one to visualize and predict a network's impedance-transforming behavior without math. We start with simple L-networks made of lumped elements or stubs, and progress through ladder networks to more complicated network topologies. We show solutions to a variety of impedance matching problems: matching at a single frequency, matching at several frequencies simultaneously, and matching a continuous band of frequencies. The Fano limit on the match bandwidth of passive loads like antennas is explained. Two tricks are shown for exceeding the Fano limit: passive reflectionless match networks and active non-Foster match networks. Free or inexpensive software for match network design is recommended.

2

Speaker's Biography

- Stephen D. Stearns
- Technical Fellow, ret., Northrop Grumman Corp.
- 40 years experience in electronic systems
 - Northrop Grumman, TRW, GTE Sylvania, Hughes Aircraft
 - Electromagnetic and signal processing systems for communications and radar surveillance, cochannel signal separation, measurement, identification, characterization, polarimetric array signal processing of ionospheric skywave signals for precision geolocating HF emitters
 - Recent work: Vector-sensor antennas; Non-Foster circuits; antennas for radiating localized, non-diffracting, OAM Bessel-Vortex beams
- FCC licenses
 - Amateur Radio Extra Class
 - 1st-Class Radiotelephone
 - General Radio Operator License (GROL)
 - Ship Radar Endorsement
- Education
 - Stanford under Prof. T.M. Cover
 - USC under Profs. H.H. Kuehl and C.L. Weber
 - CSUF under Profs. J.E. Kemmerly and G.I. Cohn
- More than 100 publications and presentations, both professional (IEEE) and hobbyist (Amateur Radio)

ARRL Pacificon Presentations by K60IK

		Archived at
1999	Mysteries of the Smith Chart <u>h</u>	ttp://www.fars.k6ya.org
2000	Jam-Resistant Repeater Technology	
2001	Mysteries of the Smith Chart	\checkmark
2002	How-to-Make Better RFI Filters Using Stubs	
2003	Twin-Lead J-Pole Design	
2004	Antenna Impedance Models – Old and New	\checkmark
2005	Novel and Strange Ideas in Antennas and Impedance Matching	
2006	Novel and Strange Ideas in Antennas and Impedance Matching II	✓
2007	New Results on Antenna Impedance Models and Matching	\checkmark
2008	Antenna Modeling for Radio Amateurs	✓
2010	Facts About SWR, Reflected Power, and Power Transfer on Real	\checkmark
	Transmission Lines with Loss	
2011	Conjugate Match Myths	\checkmark
2012	Transmission Line Filters Beyond Stubs and Traps	\checkmark
2013	Bode, Chu, Fano, Wheeler – Antenna Q and Match Bandwidth	\checkmark
2014	A Transmission Line Power Paradox and Its Resolution	\checkmark
2015	Weird Waves: Exotic Electromagnetic Phenomena	\checkmark
2015	The Joy of Matching: How to Design Multi-Band Match Networks	\checkmark
2016	Antenna Modeling for Radio Amateurs	
2016	The Joy of Matching 2: Multi-Band and Reflectionless Match Netw	works

4 Steve Stearns, K6OIK ARRL Pacifico

ARRL Antenna Book, 23e, Chapter 8

FOR RADIO COMMUN Antennas, Transmission Lines

THE ARRL

<u>v duur</u>

Antenna Modeling

8.1 OVERVIEW: ANTENNA ANALYSIS BY COMP

As pointed out in The Effects of Ground chapter, irregusignificant strides in computeria lar local terrain can have a profound effect on the launch of HF It is now possible for the amater signals into the ionosphere. A system approach as described in sive computer to evaluate even co the HF Antenna System Design chapter is needed to create a Amateurs can obtain a keener g scientifically planned station. Antenna modeling programs do tenna systems - a subject that not generally take into account the effects of irregular terrain many in the past. We might add and by "irregular" we mean any sort of ground that is not flat. allow hams to debunk overblow Most modeling programs based on NEC-2 or MININEC do antennas model reflections, but they do not model diffractions. The most commonly encour

On the other hand, while a ray-tracing program like analysis are those derived from HFTA (HF Terrain Assessment by Dean Straw, N6BV government laboratories called described in the HF Antenna System Design chapter) does Electromagnetics Code." NEC take into account diffraction, it doesn't explicitly factor in Moments (MoM) algorithm. (Th the mutual impedance between an antenna and the ground. merical method of dealing with Instead, HFTA makes the basic assumption that the antenna generated by current distributed is mounted sufficiently high above ground so that the mutual want to delve into details about t impedance between an antenna and the ground is minimal. the excellent chapter in Antennas. In this chapter we'll look at modeling the antennas them-W8JK. See also the article "Pro

selves on the PC. We'll evaluate some typical antennas over by the Method of Moments," by flat ground and also in free space. Once characterized - or The ARRL Antenna Compendiu even optimized for certain characteristics - these antennas can then be analyzed over real terrain using HFTA and the othformidable, but the basic princip er tools discussed in the HF Antenna System Design chapter. broken down into a number of

Previous editions of this book have included EZNECand the field resulting from the ARRL, a version of EZNEC antenna modeling software that is evaluated by itself and also w worked with a special set of model files. Effective with this coupled segments. Finally, the 1 edition, the demo version of EZNEC 6.0 will run all EZNECsegment is vector-summed to yield ARRL models, subject to the limitations spelled out in the be computed for any elevation or effects of flat-earth ground reflec demo version documentation. The demo version of EZNEC 6.0 is free and can be downloaded from www.eznec.com. ground conductivity and dielectri as well Previous versions of EZNEC-ARRL will continue to operate properly with EZNEC-ARRL files as before. Model files including those referenced in this chapter are provided as

In the early 1980s, MININE use on personal computers. Becau and speed typical of personal co supplementary content on the CD-ROM that comes with the simplifying assumptions were ne ing potential accuracy. Perhaps th was that perfect ground was assu

The mathematics behind the

antenna, even though the radiatic

8.1.1 A SHORT HISTORY OF ANTENNA MODELING

ARRL Antenna Book

Steve Stearns, K6OIK

With the proliferation of personal computers since the take into account real ground p early 1980s, amateurs and professionals alike have made antennas modeled closer to group

Steve Stearns, K6OIK, contributed this set of references for the 23rd edition of the Antenna Book

8.3 REFERENCES AND BIBLIOGRAPHY

Amateur Radio Literature

1) J.L. Lawson, W2PV, "Yagi Antenna Design Experiments Confirm Computer Analysis," Ham Radio, Feb 1980, pp 19-27.

- 2) R. Lewallen, W7EL, "MININEC: The Other Side of the Sword," QST, Feb 1991, pp 18-22.
- 3) L.B. Cebik, W4RNL, "A Beginner's Guide to Using Computer Antenna Modeling Programs," ARRL Antenna Compendium, Vol 3, ARRL, 1992, pp 148-155.
- 4) J.S. Belrose, VE2CV, "Modeling HF Antennas with MININEC: Guidelines and Tips from a Code-Users
- Notebook," ARRL Antenna Compendium, Vol 3, ARRL, 1992, pp 156-164. 5) R.P. Haviland, W4MB, "Programs for Antenna Analysis
- by the Method of Moments," ARRL Antenna Compendium, Vol 4, ARRL, 1995, pp 69-73. 6) R.P. Haviland, W4MB, "Ground parameters for Antenna
- Analysis," ARRL Antenna Compendium, Vol. 5, ARRL, 1996, pp 96-100. 7) L.B. Cebik, W4RNL, "NEC and MININEC Antenna
- Modeling Programs: A Guide to Further Information," QEX, Mar/Apr 1998, pp 47-49 8) J. Rockway and J. Logan, N6BRF, "Wire Modeling Lim-
- itations of NEC and MININEC for Windows," QEX, May/Jun 1998, pp 17-21. 9) M. Tracy, KC1SX, "EZNEC 3.0 for Windows," Short
- Takes. OST, Sep 2000, p 66. 10) L.B. Cebik, W4RNL, "A Beginners Guide to Modeling
- with NEC," a four part series in QST: Part 1, Nov 2000, pp 34-38; Part 2, Dec 2000, pp 40-44; Part 3, Jan 2001, pp 44-48; Part 4, Feb 2001, pp 31-35.
- 11) L.B. Cebik, W4RNL, ARRL Antenna Modeling Course, ARRL 2003 12) L.B. Cebik, W4RNL, "Notes on Modeling LPDAs in
- MININEC," QST, Jun 2004, pp 72-73. 13) L.B. Cebik, W4RNL, "Antenna Options: A Yagi Case
- Study Part 1 Design Options," first of a three part article in QEX, Jul/Aug. 2004, pp 55-59. 14) L.B. Cebik, W4RNL, "Antenna Options: Modeling
- Software," a two-part series in QEX: Part 1, Sep/Oct 2005, pp 54-59; Part 2, Nov/Dec 2005, pp 50-56. 15) S. Stearns, K6OIK, "Antenna Modeling for Radio Ama-
- teurs," ARRL Pacificon Antenna Seminar, San Ramon, CA, Oct 17-19, 2008. Download from www.fars.k6va. org/docs/k6oik
-) W. Silver, NØAX, Antenna Modeling for Beginners: An Introductory Guide to Using Antenna Modeling Software, ARRL, 2012.
- 17) S. Nichols, GØKYA, An Introduction to Antenna Modeling, RSGB, 2014.

My contribution

Professional Literature

Conducting Bodies," IEEE Transactions on Antennas

and Propagation, Vol 14, No 6, Nov 1966, pp 782-786.

18) J.H. Richmond, "A Wire-Grid Model for Scattering by

19) R.F. Harrington, "Matrix Methods for Field Problems,"

Proc. IEEE, Vol 55, No 2, Feb 1967, pp 136-149.

20) R.F. Harrington, Field Computation by Moment Meth-

and IEEE-Wiley, 1993. 21) J.P.Y. Lee and K.G. Balmain, "Wire Antennas Coated

with Magnetically and Electrically Lossy Material,"

Radio Science, Vol 14, No 3, May-June 1979, pp 437-

445. Download from onlinelibrary.wiley.com/jour-

22) G.J. Burke and A.J. Poggio, Numerical Electromagnet-

ics Code (NEC)-Method of Moments, Part I: Program

Description-Theory; Part II: Program Description-Code:

Part III, Users Guide, Tech. Rept. UCID-18834, Law-

rence Livermore Laboratory, Jan 1981. Download all

parts as DTIC document ADA956129 from www.dtic.

magnetic Scattering by Surfaces of Arbitrary Shape,"

24) A.J. Julian, J.C. Logan, and J.W. Rockway, MININEC:

IEEE Transactions on Antennas and Propagation, Vol

A Mini-Numerical Electromagnetics Code, Tech Doc

516, DTIC ADA 121535, Naval Ocean Systems Center,

25) B.D. Popovic and A. Nešic, "Generalisation of the Con-

cept of Equivalent Radius of Thin Cylindrical Anten-

nas," IEE Proc., Part H, Vol 131, No 3, Jun 1984, pp

26) J.C. Logan and J.W. Rockway, The New MININEC (Ver

Doc. 938, DTIC ADA181682, Naval Ocean Systems

Center, Sep 1986. Download from www.dtic.mil/dtic/

27) A.C. Ludwig, "Wire Grid Modeling of Surfaces," IEEE

28) J.W. Rockway, J.C. Logan, S.T. Li, and D.W.S. Tam,

Transactions on Antennas and Propagation, Vol 35, No

The MININEC System: Microcomputer Analysis of Wire

29) G.J. Burke, Numerical Electromagnetics Code - NEC-4,

Part II: Program Description-Theory, Tech. Report

UCRL-MA-109338, Jan 1992. Download both parts

from puhep1.princeton.edu/~mcdonald/examples/ NEC_Manuals

Antenna Modeling 8-21

Method of Moments, Part I: User's Manual (NEC 4.1);

sion 3): A Mini-Numerical Electromagnetic Code, Tech.

Sep 6, 1982. Download from www.dtic.mil/dtic/tr/full-

23) S.M. Rao, D.R. Wilton, and A.W. Glisson, "Electro-

nal/10.1002/(ISSN)1944-799X/issues

mil/dtic/tr/fulltext/u2/a956129.pdf

30, No 3, May 1982, pp 409-418.

text/u2/a121535.pdf

tr/fulltext/u2/a181682.pdf

9, Sep 1987, pp 1045-1048.

Antennas, Artech House, 1988.

153-158

ods, Macmillan, 1968. Republished by Krieger, 1981,

30) U. Jakobus, DG6SHF, "Numerical Computation of the Near-Field of Typical Amateur Radio Antennas and Comparison with Approximate Results of Far-Field For-Region," 2000. Online.

Comparison of Results

ER Antenna Modeling

of Progress in Applied

Monterey, CA, Mar

Poggio, "The Numeri-

— A Brief History."

n Antennas and Propa

2004, pp 2871-2874.

I. Rubinstein, "On

id Metallic Surfaces,"

gnetic Compatibility,

, and T.K. Sarkar,

3D EM Simulation for

Software and User's

ments: A Numerical

ign," High Frequency

Download from www.

Zhao, T.K. Sarkar, L.E

alma, "HOBBIES: A

gation (APS-URSI),

IEEE International

ons in the NEC-4.2 An

-TR-490316. Lawrence

195.

.gov/pdf/304278.pdf

- Livermore National Laboratory, July 6, 2011, Download from e-reports-ext.llnl.gov/pdf/498709.pdf 38) Y. Zhang, T.K. Sarkar, X. Zhao, D. Garcia-Doñoro, W.
- Zhao, M. Salazar-Palma, and S. Ting, Higher Order Basis Based Integral Equation Solver (HOBBIES), Wiley, 2012.
- 39) A.Z. Elsherbeni, P. Nayeri, and C.J. Reddy, Antenna Analysis and Design using FEKO Electromagnetic Simulation Software, SciTech Publishing, 2014. 40) T.K. Sarkar, W.M. Dyab, M.N. Abdallah, M. Salazar-
- Palma, M.V.S.N. Prasad, and S-W. Ting, "Application of the Schelkunoff Formulation to the Sommerfeld Problem of a Vertical Electric Dipole Radiating Over an Imperfect Ground," IEEE Transactions on Antennas and Propagation, Vol 62, No 8, Aug 2014, pp 4162-4170.

Software Websites

- 4nec2: www.qsl.net/4nec2 AUTOEZ: www.ac6la.com/autoez.html cocoaNEC2: www.w7ay.net/site/Applications/cocoaNEC EZNEC: www.eznec.com FEKO: www.feko.info FEKO Lite Free Demo: www.feko.info/download/feko-lite HOBBIES: www.em-hobbies.com MMANA-GAL: hamsoft.ca/pages/mmana-gal.php NEC 4.2 (Lawrence Livermore National Lab.): ipo.llnl.gov/ technologies/nec WIPL-D: www.wipl-d.com WIPL-D Free Demo: www.wipl-d.com/products.
- php?cont=free-demo
- Unofficial NEC archives of Ray Anderson WB6TPU: ftp:// nic.funet.fi/pub/ham/antenna/NEC/swindex.html or nec-archives.pa3ki.com

Topics

- Smith chart
- Results from classical network theory 1: passive
- Impedance functions and general equivalent circuits
- Single-frequency matching
 - Iumped networks
 - TL sections and stubs
- Multiple-frequency matching
 - Iumped networks
 - TL sections and stubs
- Fano bound
- Broadband matching
- Reflectionless matching
 - Problems with Q formulas
- Results from classical network theory 2: active
- Active non-Foster matching

6

The Smith Chart

7

The Smith Chart

Phillip Hagar Smith, 1905-1987

5-1987 Developed by Phillip H. Smith at Bell Labs 1936. Published in *Electronics*, Jan. 1939 and Jan. 1944. Mrs. Smith sold copyright to IEEE MTT-S in 2015.

8

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

9

Drink Coaster

Campus Sundial

11 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

International Microwave Symposium 17-22 May 2015, Phoenix

IEEE Conference Logo

International Microwave Symposium 17-22 May 2015, Phoenix

Giant Rubber Stamp

14

International Microwave Symposium 17-22 May 2015, Phoenix

Smith chart rubber stamp is 10 cm in diameter.

Tatoo in Berkeley

International Microwave Symposium 17-22 May 2015, Phoenix

Smith chart rubber stamp is 10 cm in diameter.

Bicycling Attire in Los Angeles

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Complex Functions

Basic types of complex functions

- Global Properties
 - Linear lines map to lines
 - Bilinear circles map to circles
- Local Properties
 - Conformal right angles map to right angles

16

Mathematical Basis of the Smith Chart

17

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Smith Chart: Impedance Coordinates

Admittance Coordinates

Constant Immittance Magnitude Arcs

20

Constant Q Arcs

21

Multiplication and Division

22

Squares and Square Roots

Steve Stearns, K6OIK

23

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Computing Tangents and Cotangents

Computing Sines and Cosines

25

Network Theory

Key Dates in Passive Network Theory

1893	"Impedance" – A.E. Kennelly
1893	AC circuit theory, complex numbers or phasors, "reactance" – C.P. Steinmetz
1924	Reactance theorem, 1-port synthesis by partial fractions – R.M. Foster
1926	1-port synthesis by continued fractions – W. Cauer
1931	1-port synthesis using RLCM – O. Brune
1939	1-port synthesis using a single R – S. Darlington
1946	n-port synthesis using RLCM – Y. Oono
1949	1-port synthesis using RLC without transformers – R. Bott & R.J. Duffin
1957	Synthesis of Passive Networks – E.A. Guillemin
1958	Network Synthesis – D.F. Tuttle
1962	Linear Active Network Theory – L. de Pian
1973	<i>Network Analysis and Synthesis</i> – B.D.O. Anderson and S. Vongpanitlerd
2009	All singular elements found – A.M. Soliman
2015	Theory and Synthesis of Linear Passive Time-Invariant Networks – D.C. Youla

Key Dates in Broadband Impedance Matching

1928	Constant resistance reflectionless networks – O.J. Zobel
1937	Constant resistance multiplexers – E.L. Norton
1947	Bound on return loss bandwidth for lossless networks – R.M. Fano
1952	Bound on insertion gain bandwidth for reflectionless networks – H.J. Carlin & R. LaRosa
1 964	New theory of broadband matching – D.C. Youla
1976	<i>Theory and Design of Broadband Matching Networks</i> – W-K. Chen
1977	Real frequency method – H.J. Carlin
1982	Simplified real frequency technique – B.S. Yarman & H.J. Carlin
1986	RFT matching for 2-9 MHz dipole – O.M. Ramahi & R. Mittra
1994	SRFT matching for 3 GHz microstrip antenna – H. An, B.K.J.C. Nauwelaers, & A.R. Van de Capelle
2003	SRFT matching for loaded wire HF antenna – K. Yegin & A.Q. Martin
2002-10	Non-Foster active networks for extreme broadband matching – S.E. Sussman-Fort, S.D. Stearns, & others

28

Arthur Edwin Kennelly, 1861-1939

29

Charles Proteus Steinmetz, 1865-1923

30

Ronald Martin Foster, 1896-1998

Sidney Darlington, 1906-1997

32

Earnst Adolph Guillemin, 1908-1970

Dante C. Youla, 1925-

90 Years of Progress in Electrical Network Theory

A Reactance Theorem

By RONALD M. FOSTER

SWNOFSIS: The theorem gives the most general form of the driving-point impedance of any network composed of a finite number of self-inductances, mutual inductances, and capacities. This impedance is a pure reactance with a number of resonant and anti-resonant frequencies which alternate with each other. Any such impedance may be physically realized (provided resistances can be made negligibly small) by a network consisting of a number of simple resonant circuits (inductance and capacity in series) in parallel or a number of simple anti-resonant circuits (inductance and capacity in parallel) in series. Formulas are given for the design of such networks. The variation of the reactance with frequency for several simple circuits is shown by curves. The proof of the theorem is based upon the solution of the analogous dynamical problem of the small oscillations of a "system about a position of equilibrium with no frictional forces acting."

AN important theorem¹ gives the driving-point impedance² of any network composed of a finite number of self-inductances, mutual inductances, and capacities; showing that it is a pure reactance with a number of resonant and anti-resonant frequencies which alternate with each other; and also showing how any such impedance may be physically realized by either a simple parallel-series or a simple series-parallel network of inductances and capacities, provided resistances can be made negligibly small. The object of this note is to give a full statement of the theorem, a brief discussion of its physical significance and its applications, and a mathematical proof.

THE THEOREM

The most general driving-point impedance S obtainable by means of a finite resistanceless network is a pure reactance which is an odd rational function of the frequency $p/2\pi$ and which is completely determined, except for a constant factor H, by assigning the resonant and antiresonant frequencies, subject to the condition that they alternate and include both zero and infinity. Any such impedance may be physically

¹ The theorem was first stated, in an equivalent form and without his proof, by George A. Campbell, *Bell System Technical Journal*, November, 1922, pages 23, 26, and 30. By an oversight the theorem on page 26 was made to include unrestricted dissipation. Certain limitations, which are now being investigated, are necessary in the general case of dissipation. The theorem is correct as it stands when there is no dissipation, that is, when all the R's and G's vanish; this is the only case which is considered in the present paper.

A corollary of the theorem is the mutual equivalence of simple resonant components in parallel and simple anti-resonant components in series. This corollary had been previously and independently discovered by Otto J. Zobel as early as 1919, and was subsequently published by him, together with other reactance theorems, *Bell System Technical Journal*, January, 1923, pages 5-9.

^a The driving-point impedance of a network is the ratio of an impressed electromotive force at a point in a branch of the network to the resulting current at the same point.

259

Theory and Synthesis of Linear Passive Time-Invariant Networks

Dante C. Youla

Impedance & Admittance (Immittance) Functions

- Impedance and admittance functions of passive devices, elements, and networks are positive-real functions of complex frequency $s = \sigma + j\omega$
- Analytic in the RHP no poles or zeros there
- Poles and zeros can exist only on $j\omega$ axis and in LHP
- Immittance functions of lumped RLC networks
 - Are rational functions with positive coefficients
 - Numerator and denominator polynomial degrees differ by 0 or 1
 - If the degrees are the same, the network has losses
- The magnitude of the impedance or admittance function of a passive element or network cannot increase faster than f (1st power of frequency)
- The magnitude of the impedance or admittance function of a passive element or network cannot decrease faster than 1/f (inverse frequency)

36
More Facts from Network Theory

- The imaginary part of the impedance or admittance function of a lossless passive element or network has non-negative derivative with respect to frequency
- The real and imaginary parts of the impedance or admittance function of a passive element or network cannot be specified independently – one determines the other
- Real and imaginary parts are related by Poisson/Schwarz integrals
- An arbitrary resistance function such as R(f) = R₀f² either has reactance or else is not passive
- Antenna models that use non-passive elements are active and therefore problematic with respect to stability
 - Witt (1995)
 - Long, Werner, and Werner (2000)
 - Rudish and Sussman-Fort (2002)
 - Aberle and Romak (2007)
 - Karawas and Collin (2008)
- Similarly, the ideal transformer is passive, yet its π and T equivalent circuits are active non-Foster networks
- Such equivalent circuits are "equivalent" only in certain respects such as impedance on the j_ω axis but may not be equivalent in other respects such as active vs passive or stability behavior

Example of How Real and Imaginary Parts are Related

Impedance

$$Z(s) = \frac{as^3 + bs^2 + cs + d}{es^2 + s}$$

Real part

$$R(j\omega) = \frac{(be-a)\omega^2 + (c-de)}{e^2\omega^2 + 1}$$

Imaginary part

$$X(j\omega) = \frac{ae\omega^4 + (b - ce)\omega^2 - d}{e^2\omega^3 + \omega}$$

Poisson/Schwarz integrals

> AKA "Hilbert transform" or Kramers-Kronig relations

$$R(\omega) = \frac{2}{\pi} \int_{0}^{\infty} \frac{u X(u)}{\omega^{2} - u^{2}} du + R_{0}$$

$$X(\omega) = \frac{-2\omega}{\pi} \int_{0}^{\infty} \frac{R(u)}{\omega^{2} - u^{2}} du + X_{0}(\omega)$$

- Letting $R(\omega) = R_0 \omega^2$, we find that $X(\omega)$ does not exist
- Hence $R_0 \omega^2$ cannot be the real part of any passive impedance function
- No passive device exists that has impedance $R_0\omega^2$

39

Positive-Real Impedance Functions Curve Clockwise

Darlington Forms (1939)

- Every immittance function can be realized as a lossless two-port terminated by a resistor
- Every antenna impedance function has an equivalent circuit in Darlington form

- The Darlington form is the starting point for interesting results in network and matching theory
 - The Fano (1947) and Carlin-LaRosa (1952) bounds on impedance matching
 - Reflectionless impedance matching networks
 - Non-Foster active impedance matching networks

Steve Stearns, K6OIK

41

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Antennas Ring at Many Frequencies (Like Bells)

- Distributed and electromagnetic systems are infinitedimensional linear systems
- Tesche (1973) derived antenna TM modes by SEM
- Immittance functions are transcendental, meromorphic instead of rational because poles and zeros are isolated

Meromorphic Functions

• A function f (s) is meromorphic if

- It can be expressed as a ratio of two analytic functions
- Singularities are ordinary poles (infinity excepted)
- Poles are isolated (poles have no accumulation/cluster points)

Consider meromorphic immittance functions that satisfy

- All poles lie in the left half of the complex s-plane
- $\succ f^*(s) = f(s^*)$
- > Re{ $f(j\omega)$ } is non-negative
- > All poles of f(s) are simple

Examples

- > P.r. rational functions: P(s)/Q(s)
- > Complex exponentials: exp(s), exp(-s)
- Trigonometric functions: sin(s), cos(s), tan(s)
- Hyperbolic functions: sinh(s), cosh(s), tanh(s)
- Many special functions of mathematical physics

Mittag-Leffler states a convergent series for f(s)

$$f(s) = f(0) + \lim_{N \to \infty} \sum_{n=-N}^{N} \left(\frac{A_n}{s - s_n} - \frac{A_n}{0 - s_n} \right)$$

= $f(0) + \lim_{N \to \infty} \left(P_N(s) - P_N(0) \right)$

where

$$P_N(s) = \sum_{n=-N}^{N} \frac{A_n}{s - s_n}$$

• Yields a design recipe for a network that realizes f(s)

- > Step 1: Determine the poles of s_n of f(s)
- > Step 2: Determine the residues A_n

$$A_n = \lim_{s \to s_n} (s - s_n) f(s)$$

Steve Stearns, K6OIK

44

Sergei Alexander Schelkunoff, 1897-1992

Equivalent Circuits for Transcendental Immittances

- Schelkunoff (1944), Zinn (1952): Transcendental immittances of continuous electromagnetic structures can be represented by ladder networks made of one of four subcircuits
 - > Poles and zeros at f = 0 and ∞ help determine which one

46

Circuit Models for Antenna Impedance

Broadband Equivalent Circuits

47 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Impedance Models for Electrically-Small Dipoles & Monopoles

Example 1: K6OIK Broadband Equivalent Circuit for 98.4-ft Dipole (L/d = 11,013) from DC to 30 MHz

Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Impedance Comparison on Smith Chart

Impedance Comparison: NEC4 vs Equivalent Circuit

Example 2: K6OIK Broadband Equivalent Circuit for 1-meter Dipole (L/d = 50) from DC to 1.5 GHz

- Introduced by the author in 2007
- Partial fraction expansion of dipole admittance
- A modification of Foster's 2nd canonical form
- More accurate than other broadband equivalent circuits for dipoles, viz. Hamid-Hamid (1997), Rambabu-Ramesh-Kalghatgi (1999), and Streable-Pearson (1981)
- Six stages sufficient to cover *d-c* to 1.5 GHz

Steve Stearns, K6OIK

Impedance Comparison on Smith Chart

Impedance Comparison: NEC4 vs Equivalent Circuit

SWR of Equivalent Circuit

Comparison of Antenna Impedance Models

Antenna Impedance Model	Approximation Accuracy	Realizable Equivalent Circuit	Darlington Form	Element Types	Maximum Frequency Range
Series RLC	fair	yes	yes	<i>R, L,</i> C	0.94 <i>f</i> ₀ to 1.05 <i>f</i> ₀
Witt model	fair	no	no	<i>R</i> (<i>f</i>) and TL stub	0.6 <i>f</i> ₀ to 1.2 <i>f</i> ₀
Chu 3-Element	good	yes	yes	R, L, C	0.90 <i>f</i> ₀ to 1.08 <i>f</i> ₀
Tang-Tien-Gunn 4-Element	excellent	yes	yes	R, L, C	DC to 1.4 <i>f</i> ₀
Schelkunoff 4-Element	excellent	yes	yes	<i>R,L,C</i> ,TL	DC to 1.4 <i>f</i> ₀
K6OIK 5-Element	excellent	yes	yes	R, L, C	DC to 1.4 <i>f</i> ₀
Fosters 1 st Form with small losses	poor, best near antiresonances	yes	no	R, L, C	no limit
Fosters 2 nd Form with small losses	poor, best near resonances	yes	no	R, L, C	no limit
Long-Werner-Werner	fair	no	no	<i>R, C</i> , TL	5 octaves
Streable-Pearson	good	yes	no	R, L, C	no limit
K6OIK Broadband	excellent	yes	no	R, L, C	no limit
Schelkunoff TL cascade	fair	yes	yes	R, L, C, TL	limited
Spherical TE-TM modes	excellent _{ARRI}	Ves Pacificon, San Ra	mon. CA	R, L, C	no limit

Antenna Q

Heinrich Hertz's Drawings of Electric Fields of a Dipole circa 1888

Generation of Dipole Fields

Electric and Magnetic Fields of a Dipole

 Fields of dipole source in free space, or monopole over perfect electrical conductor (PEC) plane

One radianlength defined as $r = 1/k = \lambda/2\pi$ is the distance at which far field and near field terms are equal.

Steve Stearns, K6OIK

60

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Q of Small Dipole from Electromagnetic Field Analysis

Q of Small Loop from Electromagnetic Field Analysis

Q of Inverted-L from Electromagnetic Field Analysis

Formulas for Q from Feedpoint Impedance

Series RLC equivalent circuit

$$Q(f) = \frac{|X(f)|}{R(f)}$$

Geyi (2000, 2003)

$$Q(f) = \frac{f}{2R(f)} \left[\frac{dX(f)}{df} \pm \frac{X(f)}{f} \right]$$

Yaghjian and Best (2003, 2005)

$$Q(f) = \frac{f}{2R(f)} \sqrt{\left(\frac{dR(f)}{df}\right)^2 + \left(\frac{dX(f)}{df} + \frac{|X(f)|}{f}\right)^2}$$

Hansen (2007)

$$Q(f) = \frac{f}{2R(f)} \left| \frac{dX(f)}{df} \right|$$

Counterexamples to these formulas exist. No general formula for computing Q from Z exists. Antenna Q must be computed from field expressions.

Steve Stearns, K6OIK

64

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Impedance Matching

Impedance-Matching Techniques

- Transmitter ATUs
- Feedpoint networks (today's subject)
 - Lumped-element networks: L, Pi, T, ladder, twin-T, bridged-T, lattice
 - Transmission line networks: cascaded sections and stubs
 - Active non-Foster circuits

Structures built into antenna or at feed point

Delta match, Gamma match, T match

External structures

Caps and radomes of special materials

Common Lumped Match Network Topologies

Common networks

- L networks
 - 4 shown of 8 possible
- T networks
 - 3 shown of 8 possible
- Pi networks
 - 3 shown of 8 possible

Other lumped networks

- General ladder networks
- Twin-T networks
- Bridged-T networks
- Lattice networks

Conjugate Matching versus Z₀ **Matching**

Conjugate Impedance Matching

- Maximizes power delivery at a junction – transmitter-to-line or line-to-antenna, but
- Does NOT necessarily maximize power delivery at other junctions
- Does NOT necessarily prevent reflections at the junction
- Inherently single or discrete frequency; broadband not possible unless non-Foster

Z₀ Impedance Matching

- Best criterion to use at the load end of a transmission line
- Minimizes reflections on the line, thereby avoids additional loss due to SWR
- Maximizes system bandwidth

Where Should a Matching Network Go?

Good Setup

Best Setup

Reflection Losses versus SWR

A Band-Pass Reflection Filter

Smith Chart

72
Smith Chart + Data

73

Smith Chart + Data + Match Goal

Smith Chart + Data + Filter Goals

Single-Frequency Matching

Single-Frequency Matching

- Eight canonical L networks
- Transmission line stubs
- Transmission line sections
- Quarter-wave sections
- Alternated-line, nonsynchronous match

2-Element Ladder Networks

L networks

78 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Smith Chart: Effect of Adding Series Reactances or Shunt Susceptances

Eight L Networks and Their Match Regions

80

Electrically-Short Stubs As Capacitors and Inductors

- Open and shorted stubs that are electrically short act like lumped element capacitors and inductors
- Electrically-short short-circuited stubs act as inductors

$$Z_{in} = jZ_0 \tan \frac{2\pi fl}{c} \approx j 2\pi f \frac{Z_0 l}{c} \qquad \Rightarrow \qquad L = \frac{Z_0 l}{c} = Z_0 \tau$$

Electrically-short open-circuited stubs act as capacitors

 Stubs may be used in place of capacitors and inductors to make filters

Three Ways to Set Capacitance and Inductance

- Adjust both Z_0 and l
- Adjust Z_0 with l fixed
- Adjust l with Z_0 fixed

Z_0	Short-Circuited Stubs	Open-Circuited Stubs
	nH per ft	pF per ft
12.5	12.7	81.3
25	25.4	40.7
37.5	38.1	27.1
50	50.8	20.3
75	76.2	13.6
100	102	10.2
150	152	6.78
200	203	5.08
300	305	3.38
450	457	2.26

Quarter-Wave Stubs As Resonant Circuits

 Shorted quarter-wave stubs act like parallel resonant circuits

$$Z_{in} = jZ_0 \tan \frac{\pi}{2} \frac{f}{f_0} \implies L = \frac{2Z_0}{\pi^2 f_0} \quad C = \frac{1}{8Z_0 f_0}$$

Open quarter-wave stubs act like series resonant circuits

$$Z_{in} = -jZ_0 \cot \frac{\pi}{2} \frac{f}{f_0} \implies L = \frac{Z_0}{8f_0} \qquad C = \frac{2}{\pi^2 Z_0 f_0}$$

Exact Equivalent Circuits of an Open Stub

$$Z_{in} = Z_0 \operatorname{coth} \gamma l = Z_0 \operatorname{coth} (\alpha l + j\beta l)$$

94

Exact Equivalent Circuits of a Shorted Stub

$$Z_{in} = Z_0 \tanh \gamma l = Z_0 \tanh (\alpha l + j\beta l)$$

- Frequency-independent loss
- R, L, G, C are for total line length l

$$L = Z_0 \frac{l}{c} = Z_0 \tau$$

95

Comments on Stubs

- Shunt stubs work fine if space allows and losses are low
- Series stubs are problematic
 - Common mode current causes radiation loss
- Shorted stubs are preferred over open stubs
 - Zero impedance is an easier boundary condition to enforce than zero admittance due to field fringing
 - You can't stop current with an open circuit. The current merely switches from conduction to displacement current and keeps on going
- Networks often have greater match bandwidths when made of lumped elements rather than stubs
- Impedance function of stubs is periodic in frequency
- If a network is made only of lossless transmission line elements, all of which have commensurate lengths, i.e. lengths are multiples of a common length *l*, then the network response is periodic in frequency with period *c/l*

Alternated-Line Match

Alternated-Line Match

- Special case of matching using cascaded transmission line sections of differing impedances
- Invented by Peter Bramham at CERN
 - B. [sic] Bramham, "A Convenient Transformer for Matching Coaxial Lines," *Electronic Engineering* (London), pp. 42-44, Jan. 1961

Known by several names, not all are correct

- Non-synchronous match or transformer (Matthaei, Young, Jones, 1964)
- Series section match or transformer (incorrect, OD5CG, QST, July 1978)
- Sixth-wave match or transformer
- Twelfth-wave match or transformer (AA7FV, QST, June 1997)
- Synchronous match or transformer (incorrect, N0AX, QST, Oct. 2009)

• Requires just two sections of two kinds of line – one with low Z_0 and the other with high Z_0

Bramham's Alternated-Line Match

For Z₁ and Z₂ real (resistances)

$$\frac{l}{2} = \frac{\lambda}{2\pi} \arctan \sqrt{\frac{1}{1 + \frac{Z_1}{Z_2} + \frac{Z_2}{Z_1}}}$$

• If $Z_1 / Z_2 \approx 1$, then
 $l \rightarrow \frac{\lambda}{6}$ and $\frac{l}{2} \rightarrow \frac{\lambda}{12}$

- The alternated-line technique can be generalized to match any two complex impedances given lines of two different characteristic impedances, one low and one high
- Similar to series L and shunt C moves using lumped elements

99

Multi-Frequency Match Networks

100 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Matching at Two Frequencies

Example 1: GPS L1 and L2 bands Example 2: Cellular 900-MHz and PCS 1900-MHz bands

101 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Example 1: GPS Antenna Before Matching on Two Bands Shown in Serenade SV

Example 1: GPS Antenna Before Matching on Two Bands L1 and L2 Frequencies, Shown in Microwave Office

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Example 1: GPS Antenna Matching on Two Bands Shown in WinSMITH

Steve Stearns, K6OIK

SWR Before Matching

Steve Stearns, K6OIK

GPS Dual-Band Matching Network No. 1

GPS Dual-Band Matching Network No. 2

GPS Dual-Band Matching Network No. 3

GPS Dual-Band Matching Network No. 4

GPS Dual-Band Matching Network No. 5

SWR Before and After Match Shown in Ansoft Serenade SV

Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

SWR After Match Shown in Microwave Office

ARRL Pacificon, San Ramon, CA

Match Result (Blue) Shown in Ansoft Serenade SV

113

Match Result Shown in Microwave Office

114 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

GPS Antenna Dual-Band Matching Network No. 1 Done in WinSMITH

115

Design Procedure for 2-Frequency Matching

- Step 1: Move both points onto the unit resistance or conductance circle with the low frequency point clockwise from the high frequency point
 - There are many ways to do this first step. For example, one can use an Lnetwork to move one point to center and then use a transmission line segment to rotate the other point onto a unit resistance or unit conductance circle.

Step 2: Add a series or shunt LC resonator

> For points on the unit resistance circle, add a series LC resonator in series

> For points on the unit conductance circle, add a parallel LC resonator in shunt

- Step 3: Adjust L and C to move both points to center of Smith chart
- Two frequency points can be brought to center by using a single LC resonator stage

Do the above steps while viewing a Smith chart and using tuning sliders. When the points are close to center, use an optimizer to fine tune the parts values.

Example 2: Cellular and PCS Dual-Band Matching at 900 MHz and 1900 MHz

P.J. Bevelacqua, "Dual-Band Impedance Matching," online at http://www.antenna-theory.com/tutorial/smith/smithchartC.php

ARRL Pacificon, San Ramon, CA

SWR Before Matching

P.J. Bevelacqua, "Dual-Band Impedance Matching," online at http://www.antenna-theory.com/tutorial/smith/smithchartC.php

118 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Bevelacqua's Solution – A 2-Band, 4-Element Matching Network

P.J. Bevelacqua, "Dual-Band Impedance Matching," online at http://www.antenna-theory.com/tutorial/smith/smithchartC.php

ARRL Pacificon, San Ramon, CA

Result After Matching

P.J. Bevelacqua, "Dual-Band Impedance Matching," online at http://www.antenna-theory.com/tutorial/smith/smithchartC.php

ARRL Pacificon, San Ramon, CA

SWR After Matching

P.J. Bevelacqua, "Dual-Band Impedance Matching," online at http://www.antenna-theory.com/tutorial/smith/smithchartC.php

121 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Missing Final Step – Fine Tuning!

ARRL Pacificon, San Ramon, CA

A Perfect 2-Frequency Match Shown in Microwave Office

ARRL Pacificon, San Ramon, CA

Series-Shunt L Topology Using 4 Lumped Elements

Steve Stearns, K6OIK

124

ARRL Pacificon, San Ramon, CA

Shunt-Series L Topology Using 4 Lumped Elements

Steve Stearns, K6OIK

125

ARRL Pacificon, San Ramon, CA

All 7 Networks Achieve Perfect 2-Frequency Match

Choice among networks can depend on losses, ease of practical implementation, sensitivity to parts tolerances, statistical yield, or other criteria.

Steve Stearns, K6OIK

130

ARRL Pacificon, San Ramon, CA

Matching at Three Frequencies

Example 3: KM5KG 3-frequency match (*QEX*, 2001) Example 4: Author's 3-band match for 75, 60, and 40 meters Example 5: Author's 3-band match for 75, 40, and 20 meters

Example 3: KM5KG's 3-Frequency Match for 80-Meter Band *QEX*, Sept /Oct. 2001

- Illustrates pitfalls of attempting wideband matching at fewer discrete frequencies than the order of the network
- Antenna: An electrically-short vertical monopole
- KM5KG matched three frequencies in 80-meter band

Frequency (MHz)	Real (ohms)	Imaginary (ohms)
3.500	15.9	-112.0
3.750	19.0	-86.6
4.000	22.6	-62.6

Impedance of KM5KG's Vertical Monopole

133

KM5KG's Solution: A 3-Frequency, 6-Element Match Network

Component losses included

- > Capacitors: $Q_c = 1,000$
- > Inductors: $Q_L = 800$
- Components calculated for match at 3.5, 3.75, and 4 MHz
- KM5KG assumed that matching at 3 frequencies (band edges and midpoint) would result in a continuous frequency match across the 80meter band
- Network topology is correct for Wheeler "triple-tuned" broadband match, but components were calculated for 3-frequency match instead

Matching Result – Not Published in *QEX*

135

A 3-Frequency Match Is Not a Broadband Match!

This example illustrates the Fano bound. Multi-frequency matching is the wrong approach to broadband continuous frequency matching.

Steve Stearns, K6OIK

136

ARRL Pacificon, San Ramon, CA

Example 4: Matching a 98.4-ft. Dipole on Three Bands

- Ward Silver (N0AX) proposed to design an antenna for the 75, 60, and 40-meter bands
- Author's "lazy man" solution: Take an existing antenna and design a feedpoint match network for the three bands
- Antenna: 98.4-foot wire dipole antenna resonant at 4.868 MHz
- Frequencies: 3.9, 5.35, and 7.2 MHz
- Design goal: SWR = 1 at these three frequencies

Dipole Impedance

Dipole Impedance on the Smith Chart

ARRL Pacificon, San Ramon, CA

Dipole SWR Before Matching

SWR

Zoom View Dipole SWR Before Matching

141 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

5-Element, 3-Band Matching Network Shown in Serenade SV

Matching Network Shown in Microwave Office

Impedance After Matching, Shown in Serenade SV

Impedance After Matching, Shown in Microwave Office

SWR After Matching, Shown in Serenade SV

The total match bandwidth for all frequencies is limited by the Fano bound. By matching more frequencies, the match bandwidth at each frequency shrinks.

Steve Stearns, K6OIK

146

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

SWR After Matching, Shown in Microwave Office

Example 5: Matching 98.4-ft. Dipole on 75, 40, and 20 Meter Bands

- Same as Example 4 except bands are 75, 40, and 20 meters
- Antenna: 98.4-foot wire dipole antenna resonant at 4.868 MHz
- Frequencies: 3.9, 7.2, and 14.2 MHz
- Design goal: SWR < 1.5 across 20-kHz bands centered on the design frequencies

3-Band Match Network for 3.9, 7.2, and 14.2 MHz Optimized for 20-kHz Match Bandwidths at SWR 1.5

Optimized Match Network for 75, 40, and 20 meters

Match Result

150

SWR

Design Procedure for 3-Frequency Matching

- Step 1: Use an L-network to move one point to the center of the Smith chart
- Step 2: Add a Z₀-ohm transmission line segment to rotate another point to the unit resistance (r = 1) circle or the unit conductance (g = 1) circle such that
 - > On the r = 1 circle, the low-frequency point is clockwise from the high-frequency one
 - > On the g = 1 circle, the low-frequency point is clockwise from the high-frequency one
- Step 3: Add an LC resonator section and adjust L and C to move the points to the center of the Smith chart
 - For points on a resistance circle, use a series LC resonator to move the points
 - > For points on a conductance circle, use a shunt LC resonator to move the points
 - > This step requires that you label and keep track of each point's frequency
- Step 4: Repeat Steps 2 and 3 for the third point
- Three points in the proper order on the r = 1 or g = 1 circle can often be brought to center by using a single resonator stage and optimizing all values

Do the above steps manually viewing a Smith chart and using tuning sliders. When the points are close to center, use an optimizer to finish fine tuning the parts values.

Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Matching at More than 3 Frequencies

Subharmonic stubs for adding a low frequency to an existing design Distributed matching via network loads on a main transmission line L-network synthesis for matching an arbitrary number of frequencies

Examples 6 and 7: Add Top Band to Existing Match Networks

- Antenna is 98.4 ft. dipole
- Objectives
 - Add-A-Band, while keeping the match on other bands

Approach

- Example 6: Add 160 meters to a 2-band match network for 75 and 40 meters
- Example 7: Add 160 meters to 3-band match network of Example 4

Impedance of 98.4 ft. Dipole Antenna

155

Add-A-Band via an L with Subharmonic Stubs

Initial 2-Band Match Network

Performance of Initial 2-Band Match Network

158 Steve Stearns, K6OIK

SWR of Initial 2-Band Match Network

Example 6: Adding 160 to 75 and 40 Meter Match By Using an L Topology with Subharmonic Stubs

Optimized Match Network for 160, 75 and 40 meters

- An L network is added to match 1.9 MHz
- Quarter-wave stubs bypass the L network on harmonic bands, thereby preserving the match on 75, 40, and 20 meters

160

Result

SWR

Comments on Subharmonic Stubs for Add-A-Banding

Method is simple in concept but limited in utility

Bands must be harmonic, and added band must be the fundamental

Requires a lot of transmission line

- Two quarter-wave stubs require a half wavelength of line at the fundamental frequency
- Impractical at HF, but ok at VHF/UHF
- If impedance of band to be added is near Smith chart boundary, as is the case for electrically small antenna, small match bandwidth should be expected
 - Added band will have small match bandwidth, and other matched bands may suffer reduced match bandwidths

This method uses a lot of circuit elements for what it does

- 9 elements having 11 degrees of freedom just to match 3 frequencies!
- It is generally better to design a match network for all frequencies than to add a decoupled input L network to an existing match network

Add-A-Band via Line Segment and Shunt Susceptance with Zeros

Add-A-Band: Add 160 meters to Example 4

165

Initial SWR, Shown in Microwave Office

Using a Line Segment and Shunt Susceptance with Zeros

167

Input Impedance of 4-Band Network on Smith Chart

Perfect 4-Frequency Matching but No Bandwidth!

Iterative Synthesis

Multi-Frequency Matching by Distributed Network Loads Along Main Line

Examples 8 and 9: Four-Band and Five-Band Matching on 75, 40, 20, 15, and 10

- Antenna: 98.4 ft. dipole
- Objectives:
 - > Example 8: 4-band match at 3.9, 7.2, 14.2, and 29 MHz
 - > Example 9: 5-band match at 3.9, 7.2, 14.2, 21.2, and 29 MHz

Topology:

- Multiply loaded feed line
- All transmission lines are part of the main 50-ohm feed line (match network is "built into" the feed line)
- ➢ No stubs allowed (impractical at HF)
- > All reactive elements are lumped element capacitors and inductors

• Approach:

- > Iterative, highest frequency first (but any order is permitted)
- Use tuning sliders to add stages for each lower frequency in sequence
- Use optimizer to fine-tune intermediate and final network structures

Antenna Impedance on Smith Chart

Initial Position of 29 MHz

Because the 29-MHz point is inside the unit resistance circle, we will revolve it to the circle by using a shunt capacitor. Then we will revolve it along the r = 1 circle to chart center by using a series inductor.

Swp Min 1MHz October 14-16, 2016

173

Step 1: Match 29 MHz

Optimized Match Network for 10 meters

174 Steve Stearns, K6OIK

Result of Step 1

With the 29-MHz point at center, we next match 14.2 MHz by using a 50ohm line segment to revolve the point onto bottom half of g = 1 circle or top half of r = 1 circle. We will do the former because it requires less line.

Swp Min 1MHz October 14-16, 2016

Match at 29 MHz with Added Line Segment

Result of Adding Line Segment

Steve Stearns, K6OIK

177

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Network for 2-Frequency Match at 14.2 and 29 MHz

Optimized Match Network for 10 and 20 meters

Result of Step 2

With the 14.2 and 29-MHz points at center, we next match 7.2 MHz by using a 50-ohm line segment to revolve the point onto bottom half of g = 1 circle or top half of r = 1 circle. Again, we will do the former because it requires less line.

Swp Min 1MHz October 14-16, 2016

Steve Stearns, K6OIK

Match at 14.2 and 29 MHz with 2nd Line Segment Added

• The length of the line segment determines where along the feedline to insert the matching elements for the next frequency, 7.2 MHz
Result of Adding 2nd Line Segment

The 7.2-MHz, 14.2-MHz and 29-MHz points are on the g = 1 circle. We will use a shunt LC resonator to move all points to center.

Swp Min 1MHz October 14-16, 2016

Steve Stearns, K6OIK

181

ARRL Pacificon, San Ramon, CA

Network for 3-Frequency Match at 7.2, 14.2 and 29 MHz

Optimized Match Network for 10, 20, and 40 meters

Result of Step 3

With the 7.2, 14.2, and 29-MHz points at center, we next match 3.9 MHz by using a 50-ohm line segment to revolve the point onto bottom half of g = 1 circle or top half of r = 1 circle. This time we will do the latter because it requires less line.

Swp Min 1MHz October 14-16, 2016

ARRL Pacificon, San Ramon, CA

Match at 7.2, 14.2 and 29 MHz with 3rd Line Segment Added

• The length of the line segment determines where along the feedline to insert the matching elements for the fourth frequency, 3.9 MHz

Result of Adding 3rd Line Segment

The 3.9, 7.2, 14.2, and 29-MHz points are on the r = 1 circle. A series LC resonator cannot move all points to center. We introduce a trick.

Swp Min 1MHz October 14-16, 2016

Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Resulting 5-Band, 14-Element Matching Network

- F5: 7.83671 F6: 2.74247
- Determine an L network that matches the frequency to be added
- In the series branch of the L put a bank of series LC resonators in parallel
 - 2nd Foster form, with impedance zeros at the frequencies matched already
- In the shunt branch of the L put a bank of parallel LC resonators in series
 - 1st Foster form, with impedance poles at the frequencies matched already
- The series and shunt elements can often be absorbed into the resonator bank, although this requires calculation or an optimizer to get right

186

ARRL Pacificon, San Ramon, CA

Result for 5-Band Matching Network

SWR of 5-Band Match Network

Design Procedure for Iterative Multi-Frequency Matching

- Step 0: Choose the order in which the points are to be matched, e.g. decreasing required bandwidth, decreasing frequency, increasing frequency, etc.
- Step 1: Use an L-network to move the first point to the center of the Smith chart
- Step 2: Add a Z₀-ohm transmission line segment to rotate the second point to the unit resistance (r = 1) circle or the unit conductance (g = 1) circle such that
 - On the r = 1 circle, the low-frequency point is clockwise from the high-frequency one
 - On the g = 1 circle, the high-frequency point is counter-clockwise from the low-frequency one

• Step 3: Add an LC resonator and adjust *L* and *C* to move both points to center

- > For points on a resistance circle, use a series LC to move the points
- > For points on a conductance circle, use a shunt LC to move the points
- > This step requires that you label and keep track of each point's frequency
- Step 4: Repeat Steps 2 and 3 for each remaining frequency point in order
- Three points in the proper order on the r = 1 or g = 1 circle can often be brought to center by using a single series or shunt LC resonator and optimizing all values

Do the above steps manually viewing a Smith chart and using tuning sliders. When the points are close to center, use an optimizer to finish fine tuning the parts values.

Examples 10 and 11: Alternate 4-Band and 5-Band Matching on 75, 40, 20, 15, and 10 Meters

- Antenna: 98.4 ft. dipole
- Objectives:
 - > Example 10: 4-band match at 3.9, 7.2, 14.2, and 21.2 MHz
 - > Example 11: 5-band match at 3.9, 7.2, 14.2, 21.2, and 29 MHz
 - See if reversing the frequency order gives greater match bandwidth on 75 meters and less on 10 meters as compared to Examples 8 and 9

Topology:

- Example 4: Use lumped element capacitors and inductors
- Example 5: Add a line section and resonator bank for fifth frequency

Approach:

- Match lowest four frequencies using an 8-element network
- > Add a resonator bank to match the 5th (highest) frequency
- Use tuning slider to hand tune the line section for 29 MHz
- Use optimizer to fine-tune intermediate and final network structures

190

ARRL Pacificon, San Ramon, CA

Example 10: Four-Band, 8-Element Lumped Match Network for 80, 40, 20, and 15 Meters

Optimized Match Network for 75, 40, 20, and 15 meters

SWR of 4-Band Match

4 Bands Matched Using Lumped Network, 1 Band to Go

Result After Rotating the 29-MHz Point to the r = 1Circle

Example 11: Final 5-Band, 17-Element Matching Network

Impedance of 5-Band Match Network

SWR

Matching an Arbitrary Number of Frequencies Using L-Network Topologies

Antenna Impedance on Smith Chart

Shunt-Series L-Network Topology

Step 1: Decide On the Sequence of Match Points to Realize

	Top Half of $r = 1$ Circle		Lower Half of $r = 1$ Circle	
Frequency	<i>B</i> mS	X ohms	<i>B</i> mS	X ohms
3.9	-5.5735	-378.57	-0.3811	378.57
7.2	-1.7414	-373.86	3.5142	373.86
14.2	-10.375	-148.84	1.6997	148.84
21.2	-2.9744	-425.20	1.6651	425.20
29.0	-2.6680	-360.65	2.7730	360.65

- Susceptance and reactance functions are tailored to fit chosen match point sequences by using Foster synthesis
- Susceptance and reactance sequences should increase monotonically with as few downward jumps as possible
- Downward jumps should be well placed, avoiding bands or regions where large match bandwidth is desired

Shunt Branch of L Realized in 1st and 2nd Foster Forms

Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Series Branch of L Realized in 1st and 2nd Foster Forms

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Match Network No. 1: Shunt 1FF and Series 1FF

204 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Match Result on Smith Chart – 5 Frequencies Matched!

SWR – Five Bands and, Surprize! Two More!

Match Network No. 2: Shunt 1FF and Series 2FF

Five-Frequency Match

SWR

Match Network No. 3: Shunt 2FF and Series 2FF

Five-Frequency Match

SWR

Match Network No. 4: Shunt 2FF and Series 1FF

2nd Foster Form

Five-Frequency Match

SWR

Shunt-Series L Works When Points Aren't in g = 1 Circle

Series-Shunt L Works When Points Aren't in r = 1 Circle

217

- Swp Max An ideal transformer, turns ratio 7.283, shifts all points left, lowering all impedances by a factor of 53
 - Alternatively, match to $Z_0 =$ 2650 Ω , and afterwards shift to 50 Ω by transformer
 - Bottom line: when the r = 1circle is empty, a series-shunt L topology can be used

Advanced Topics

Number of choices for L topologies

Matching with constraints

Iterative synthesis

Commutative match networks

Number of Choices for L Topologies

- Choice of shunt-series L or series-shunt L: 2
- Choice of sequence of *n* match points: 2ⁿ
- Choice of 1st vs 2nd Foster form for series and shunt branches: 2²
- Choice of pole placements per branch: < 2ⁿ⁺²
- Maximum number of L match networks possible for n frequencies

$$N \le 2^{2n+5}$$

- For the examples we've shown, n = 5 and N > 33 million!
- A designer's skill, experience, and intuition reduces the number of candidate networks to consider

Matching with Constraints

- For an L network, some frequencies can be designated for which the network does not affect the load impedance
- These frequencies are "fixed points" with respect to impedance transformation by the network

$$Z_{match}(f) = Z_{load}(f)$$

 Such fixed or "do not move" points are created by adding constraints to the reactance and susceptance tables that specify an L network's branches

Frequency	<i>B</i> mS	X ohms	
3.9	-5.5735	-378.57	
7.2	0	0	
14.2	-10.375	-148.84	
21.2	0	0	
29.0	2.7730	360.65	

Match network will match 3.9, 14.2, and 29 MHz and have no effect on the load impedance at 7.2 and 21.2 MHz

220

Application 1: "Add-A-Band" Match Networks

 Given a multi-frequency match network A, new frequencies can be added to the set of match frequencies by a second match network B in cascade

Frequency	<i>B</i> mS	X ohms	Frequency	<i>B</i> mS	X ohms	
3.9	-5.5735	-378.57	3.9	0	0	
7.2	3.5142	373.86	7.2	0	0	
14.2	-10.375	-148.84	14.2	0	0	
			21.2	TBD	TBD	
			29.0	TBD	TBD	
•	A			В	A _	

Application 2: "Iterative" Match Network Synthesis

 Frequencies are added to the set of match frequencies one at a time, each by adding a network to a cascade chain

Application 3: Commutative Match Networks

 Two networks are bi-complementary if the match frequencies of each are the fixed points of the other

Frequency	<i>B</i> mS	X ohms	Frequency	<i>B</i> mS	X ohms
3.9	-5.5735	-378.57	3.9	0	0
7.2	0	0	7.2	3.5142	373.86
14.2	-10.375	-148.84	14.2	0	0
21.2	0	0	21.2	-2.9744	-425.20
29.0	2.7730	360.65	29.0	0	0

 Bi-complementary networks are commutative; frequency match does not depend on the order in which the networks are cascaded

 $\forall k = 1, \cdots, n: B(A(Z_L(f_k))) = A(B(Z_L(f_k)))$

ARRL Pacificon, San Ramon, CA

Application 4: Generalized Commutative Match Networks

 A collection of match networks is complementary if the match frequencies of every network are fixed points of the others

Freq	<i>B</i> mS	X ohms
3.9	0	0
7.2	0	0
14.2	-10.375	-148.84
21.2	0	0
29.0	2.7730	360.65

Freq	<i>B</i> mS	X ohms
3.9	0	0
7.2	3.5142	373.86
14.2	0	0
21.2	0	0
29.0	0	0

Freq	<i>B</i> mS	X ohms
3.9	-5.5735	-378.57
7.2	0	0
14.2	0	0
21.2	-2.9744	-425.20
29.0	0	0

 For complementary networks, frequency match does not depend on the order in which individual networks are cascaded

ARRL Pacificon, San Ramon, CA

Tips for Getting Maximum Match Bandwidth

- Put the network as close to antenna feedpoint as possible
- Keep match moves on the Smith chart as short and direct as possible
- Keep network order as low as possible; use the simplest network topology that gets the job done; keep transmission line sections short
- When using iterative synthesis, match the frequencies in order of importance, i.e. in order of decreasing match bandwidth
- When using L topologies, keep the slopes of the reactance and susceptance functions small at frequencies where bandwidth is desired
 - Use as few resonators as possible and keep poles away from bands where match bandwidth is desired
- An optimizer is essential when matching more than 3 frequencies but must be given a good starting point, viz. network topology and part values
- Be aware of the Fano bound: A single-frequency match network will have greater match bandwidth in a band than a multi-frequency match network can have

Multi-frequency and Multi-band Matching Using Line Sections and Stubs

Brief history

Early phase

- Cascaded quarter wave transformers matching real impedance
- Chebyschev broadband quarter wave transformers

Middle phase

- Bramham's alternated-line, 12th wave or 1/6th wave transformers
- Short-section transformers for matching a real impedance
- Networks of line sections and stubs for matching at harmonically related frequencies a real impedance
- Networks of line sections and stubs for matching at multiple comensurate frequencies multiple real impedances

Current phase

Networks of line sections and stubs for matching at multiple arbitrary frequencies a complex frequency dependent load impedance

Topologies for General Dual and Multi-Band Matching

ARRL Pacificon, San Ramon, CA

Two Realizations of Shunt *jB* and Layout Examples

ARRL Pacificon, San Ramon, CA

T-Topology for Dual Band Matching – 3 Examples

230 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Pi-Topology for Dual-Band Matching – Amplifier

A Topology for General Quad and Multi-Band Matching

Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Broadband Continuous-Frequency Matching

233 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Case Study No. 1

How Not to Do Broadband Matching

234 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Object Lesson: How Not To Do It ! As published in *QEX* Sep/Oct 2001

- Illustrates pitfalls of attempting wideband matching at fewer discrete frequencies than the order of the network
- Antenna was an electrically-short vertical monopole
- Used only three data points between 3.5 MHz and 4 MHz

Frequency (MHz)	Real (ohms)	Imaginary (ohms)
3.500	15.9	-112.0
3.725	18.7	-89.1
3.750	19.0	-86.6
4.000	22.6	-62.6

235

Impedance of KM5KG Vertical Monopole

236

Published Six-Element Matching Network

Component losses included

- > Capacitors: $Q_c = 1,000$
- > Inductors: $Q_L = 800$
- Components calculated for perfect three-frequency match at 3.5, 3.75, and 4 MHz

Matching Result - Unpublished

238

Really a 3-Frequency Match, Not a Broadband Match

Case Study No. 2

Wilfred Caron's Infamous Example 11

240 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Caron's Example 11: Long-Wire Receiving Antenna

ARRL Pacificon, San Ramon, CA

Caron's Solution

242 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Caron's Solution

ARRL Pacificon, San Ramon, CA

Eagleware's Solution 1

October 14-16, 2016

244

Eagleware's Solution 2

245

Eagleware's Solution 3: Cascaded Transmission Lines

246 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Eagleware's Solution 4: Fano Limit

247 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Fano Bound on Match Bandwidth

Robert Mario Fano, 1917-2016

R.M. Fano's Bound (1947)

- Proved in Fano's Ph.D. dissertation at MIT in 1947
- Published in summary form in the Journal of the Franklin Institute, 1950
- Applies to passive lossless impedance-matching networks
- Limits how well an arbitrary impedance can be matched by a passive lossless network of any complexity – even infinite
- Bounds the return loss bandwidth product
 - Bounds the achievable SWR for a given bandwidth
 - Bounds the achievable match bandwidth for a given SWR

The Fano bound is fundamental, but it can be bypassed by an ingenious designer.

Fano's Bound (1947)

 Bounds the area under the return loss curve of all lossless impedance-matching networks

$$\int_{0}^{\infty} \log\left(\frac{1}{\rho(\omega)}\right) d\omega \le \min\{A_1, A_2, \cdots, A_n\}$$

where

$$\rho(\omega) = \left| \Gamma(\omega) \right| = \left| s_{11}(\omega) \right|$$

and A_1, \ldots, A_n are constants that depend on the load impedance function $Z_L(f)$

Broadband Matching Made Easy

4-element matching networks
Broadband Matching Made Easy

• π -resonant and T-resonant network topologies

- Four reactive elements: an L plus a resonant circuit
- Not to be confused with two cacaded L networks (e.g. π-L and T-L networks)

A simple graphical design procedure

- Step 1: Move mid-band impedance point to points A or B with proper orientation (curving around origin) with an L network
 - To get maximum match bandwidth, choose the minimum reactance or susceptance L-network
- > Step 2: Add a series or parallel resonant circuit to network input
 - If the curve passes through point A on left, add a shunt LC
 - If the curve passes through point B on right, add series LC
- Step 3: Adjust L and C to wrap the impedance curve into the SWR circle

π -Resonant and T-Resonant Networks For Broadband Continuous-Frequency Matching

Tips on Broadband Matching

- For maximum match bandwidth, put the matching network as close to the load (antenna feedpoint) as possible
 - Avoid unnecessary transmission line in cascade as it stretches the curve, spreading the points to be matched farther apart
- 4-element networks give twice the match bandwidth as two-element L networks
- This game can be played only once. Adding four more elements will not double the match bandwidth a second time
- Four-element match networks achieve roughly 60% of the Fano bandwidth (at 2:1 SWR)
- Six-element match networks achieve roughly 75% of the Fano bandwidth (at 2:1 SWR)

Two Examples

KM5KG monopole revisited Inverted Half-Square Yagi

256 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Impedance of KM5KG Vertical Monopole

K60IK's Simple 4-Element Network

 Designed to minimize the maximum SWR across the band of interest

Input Impedance of 4-Element Matching Network

259

Input SWR of 4-Element Matching Network

K6EI's Inverted Half-Square "Yagi"

ARRL Pacificon, San Ramon, CA

Inverted Half-Square Yagi Feedpoint Impedance

Feedpoint Impedance in 40-Meter Band

SWR of Half-Square Yagi Designed for 7.020 MHz

264 Steve Stearns, K6OIK

Author's Optimized 4-Element π -Resonant Network

Input Impedance of Matching Network

266

Input SWR of Matching Network

267

Passive Reflectionless Matching Networks

268 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Question

Can a fixed (non-tunable) impedance-matching network provide unity SWR at all frequencies?

Edward Lawry Norton, 1898-1983, photo 1925

270

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

The Idea

 Traditional impedance-matching networks are "reflection" filters that create reflected waves

Subject to the Fano bound

Constant-resistance reflectionless networks

- Developed by O.J. Zobel (1928) and E.L. Norton (1937)
- Have unity SWR over a wide band
- Are "diplexers" that divide power between two loads
- Rated by insertion-loss bandwidth instead of SWR bandwidth
- Side-step the Fano bound but are subject to the Carlin-LaRosa bound

Constant Resistance Network for a Series RLC Load

A Simple Transformerless Design

- Step 1: Shorten "half-wave" dipoles or lengthen "quarter-wave" monopoles so that $R_A = 50$ ohms
 - > Dipoles: Use $K \approx 0.86$, or $L \approx 0.43\lambda$
 - > Monopoles: Use $K \approx 1.07$, or $L \approx 0.27\lambda$
- Step 2: Insert a series reactance to cancel feedpoint reactance
 - Dipoles: Add a series inductor
 - Monopoles: Add a series capacitor
- Step 3: Insert a shunt network to yield a 50-ohm constant-resistance network
- Note: transformerless designs are possible which use a few more elements, but don't require antenna modification

Eliminating the Transformer

Example: Reflectionless Match to 0.43 λ **Dipole**

Network Performance on Dipole Impedance Data

- Frequency sweep 1 to 8 MHz
- Maximum VSWR = 1.04
- Input resistance: 48.8 to 51.2 ohms
- Input reactance: -2.1 to 0 ohms

Power Delivered to the 0.43 λ Dipole

- Pattern gain = 0.11 dBd
- Minimum insertion loss = 0 dB
- 100% power delivery at 4.3 MHz
- 3-dB Bandwidth = 259 kHz (6.0%)
- 0.51-dB Bandwidth = 91 kHz (2.1%)

277

Reflectionless Matching Using Distributed Elements

- The impedance of short dipoles and monopoles can be modeled as an open circuited stub in series with a frequency dependent resistor
 - C.T. Tai, Antenna Engineering Handbook, 1961, p. 3-2
 - Square-law frequency dependent resistance

 $Z_{Ant} = 20(kl)^2 - jZ_0\cot(kl)$

Frank Witt, AI1H, Antenna Compendium, Vol. 4, 1995, p. 32

Linear frequency dependent resistance

$$Z_{Ant} = R_0 \left[1 + K_R \left(\frac{f - f_0}{f_0} \right) \right] - j Z_0 \cot(kl)$$

> where

$$Z_{0,Tai} = 120 \left[\ln \left(\frac{2L}{d} \right) - 1 \right] = 60 \left(\Omega' - 2 \right) \text{ and } Z_{0,Witt} = \frac{4 R_0 Q_0}{\pi}$$

 These models do not have equivalent circuits because they violate Kramers Kronig but are useful nonetheless

ARRL Pacificon, San Ramon, CA

Reflectionless Matching Using a Complementary Stub

- Assume the resistance varies slowly across a band
- A reflectionless match network is obtained by putting a complementary admittance in parallel with the dipole or monopole
- We obtain a constant-resistance (CR) match network made from a stub and a resistor

Parallel Connection of Resistor-Stub and Dipole

Multi-Octave Match from 1 MHz to 8 MHz

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

SWR

Resistance and Reactance

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

283

Steve Stearns, K6OIK

– Insertion Loss

General Design Procedure for Dipoles or Loops

- This design procedure creates transformerless, reflectionless match networks using 6 to 8 elements
- Step 1: Move the impedance curve so the desired operating frequency point is centered on the Smith chart by using an L network (2 elements)
- Step 2: Rotate the impedance curve so that it faces left or right by using a 50-ohm transmission line segment (1 element)
- Step 3: Optionally, bend the curve onto the unit resistance (conductance) circle by adding a parallel (series) LC (2 elements)
- Step 4: If the impedance curve faces right (left), insert a shunt (series) network to complete a 50-ohm constant resistance network (3 elements)
 - Shunt network is a parallel LC resonant circuit in series with a 50-ohm dummy load, all in parallel with the antenna
 - Series network is a series LC resonant circuit paralleled by a 50-ohm dummy load, all in series with the antenna

285

ARRL Pacificon, San Ramon, CA

H.J. Carlin and R. LaRosa's Bound (1952)

- Extends Fano's bound to passive networks that use loss to prevent reflection
- Covers passive reflectionless impedance-matching networks
- Just as Fano bounded the return loss bandwidth product of lossless networks, Carlin-LaRosa bound the insertion loss bandwidth product of reflectionless networks
 - Bounds the achievable insertion loss for a given bandwidth
 - Bounds the achievable bandwidth for a given insertion loss
- The bound is fundamental like the Fano bound
- Covers one of the two paths that bypass Fano

A Surprising Implication for Antenna Q Formulas

- Put a reflectionless match network at an antenna's feedpoint; network being
 - Part of the antenna
 - Nonradiating
- The feedpoint impedance is a constant real number independent of frequency

$$Z_A = R_A + j0$$
 $\frac{\partial R_A}{\partial \omega} = 0$ $X_A = 0$ $\frac{\partial X_A}{\partial \omega} = 0$

- Q formulas based on feedpoint Z yield zero
 - Q by formula is zero
 - Antenna Q is not zero

No general formula for computing Q from Z exists. Antenna Q must be computed from field formulas.

ARRL Pacificon, San Ramon, CA

Formulas for Q from Feedpoint Impedance

Series RLC equivalent circuit

$$Q(f) = \frac{|X(f)|}{R(f)}$$

Geyi (2000, 2003)

$$Q(f) = \frac{f}{2R(f)} \left[\frac{dX(f)}{df} \pm \frac{X(f)}{f} \right]$$

Yaghjian and Best (2003, 2005)

$$Q(f) = \frac{f}{2R(f)} \sqrt{\left(\frac{dR(f)}{df}\right)^2 + \left(\frac{dX(f)}{df} + \frac{|X(f)|}{f}\right)^2}$$

Hansen (2007)

$$Q(f) = \frac{f}{2R(f)} \left| \frac{dX(f)}{df} \right|$$

Counterexamples to these formulas exist. No general formula for computing Q from Z exists. Antenna Q must be computed from field formulas.

288

ARRL Pacificon, San Ramon, CA
Active Non-Foster Matching Networks

289 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Non-Foster Impedance Matching

- Non-Foster networks contain one or more non-Foster elements or impedances
 - Negative capacitors, negative inductors
- Side-steps Fano and Carlin-LaRosa bandwidth bounds
 - Active impedance matching networks that surpass known bandwidth limits
- Implemented using negative impedance converters (NICs) or negative impedance inverters (NIVs)
- Disadvantages:
 - Designing good NICs and NIVs is tricky
 - Circuit stability is problematic
 - Circuits must support high voltages or currents associated with resonance

Advantages:

- Promises great match bandwidths a decade or more
- Lower noise figures on receive than current active antennas
- \blacktriangleright Bilateral \Rightarrow works on transmit as well as receive
- Potential power savings

290

Founders

Otto Julius Zobel 1887-1970 Courtesy of AT&T Archives

Ronald Martin Foster 1896-1998 Courtesy of IEEE

Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Reactance Theorems for Driving Point Functions of Lossless Networks

 O.J. Zobel, "Theory and Design of Uniform and Composite Electric Wave-filters," *Bell Syst. Tech. J.*, vol. 2, no. 1, pp. 1-46, Jan. 1923

 R.M. Foster, "A Reactance Theorem," Bell Syst. Tech. J., vol. 3, no. 2, pp. 259-267, Apr. 1924

$$\frac{\partial X(\omega)}{\partial \omega} > 0$$
 and $\frac{\partial B(\omega)}{\partial \omega} > 0$

- Poles and zeros exist only on the real frequency axis
- Poles and zeros are simple
- Poles and zeros have positive real residues
- Poles alternate with zeros
- A pole or zero exists at zero and at infinity

Key Dates

- **1924 R.M. Foster, Reactance Theorem**
- **1930** B. Van der Pol, impedance transformation with –R
- **1931** L.C. Verman, negative circuit constants
- **1931** O. Brune, positive real functions, passivity, realizability
- **1937** S. Darlington, passive 1-port synthesis using a single resistor
- **1952** Emergence of active network theory
- **1950's** First applications of non-Foster circuits to active filters
- **1960** H.J. Carlin and D.C. Youla, arbitrary *N*-port synthesis using only passive elements and –R's
- **1964** D.C. Youla introduces the term "non-Foster"
- **1970's** Emergence of state-space approach to network theory
- **1970's** First applications of non-Foster circuits to antenna loading and matching

Junction Cuts

- Junctions connect branches to nodes
- A size-2 J-cut partitions the network into 2 or 3 disconnected sub-networks, yielding 4 terminals and 6 immittance functions

- J-cuts "de-wire" a network without deleting branches and nodes
- Non-Foster networks are a class of networks that may be defined formally by using J-cuts

An immittance (driving point) function is "non-Foster" if its real part is zero at all real frequencies and its imaginary part has nonpositive derivative at a real frequency.

A linear network is "non-Foster" if some size-2 J-cut gives a terminal pair having a non-Foster immittance function.

- This definition is a decision procedure for determining whether a given finite network is non-Foster
 - Terminates in a finite number of steps

Non-Foster Impedance Matching by Formal Inversion

Sidney Darlington, 1906-1997

297 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Darlington Forms (1939)

 Every positive-real, rational immittance function can be realized as a lossless lumped 2-port terminated by a resistor

- For antennas, a meromorphic antenna impedance function can be represented by a convergent sequence of equivalent circuits in Darlington form
- The Darlington form is therefore the starting point for a theory of non-Foster matching of antennas

A General Procedure (not the only one)

- Start with load impedance model in Darlington form
- Formally invert the antenna's reactance 2-port
 - Flip 2-port end-for-end, swapping input and output ports
 - Conjugate all impedances (negate all reactances)
- NIC sandwich topology inverts the load's reactance twoport

Formal Inversion via Two-Port Chain Matrix

• Let

$$T = T_M T_A = I \quad \text{and} \quad T_A = \begin{bmatrix} A(s) & B(s) \\ C(s) & D(s) \end{bmatrix}$$
• then

$$T_M = T_A^{-1} = \begin{bmatrix} D(s) & -B(s) \\ -C(s) & A(s) \end{bmatrix}$$

- If T_A is a reciprocal network, then T_M is too
 - Condition for reciprocity

A(s)D(s) - B(s)C(s) = 1

Corresponding impedance matrices

$$Z_{A} = \begin{bmatrix} z_{11}^{A} & z_{12}^{A} \\ z_{21}^{A} & z_{22}^{A} \end{bmatrix} = \frac{1}{C(s)} \begin{bmatrix} A(s) & 1 \\ 1 & D(s) \end{bmatrix}$$

$$Z_{M} = \begin{bmatrix} z_{11}^{M} & z_{12}^{M} \\ z_{21}^{M} & z_{22}^{M} \end{bmatrix} = \frac{1}{C(s)} \begin{bmatrix} -D(s) & -1 \\ -1 & -A(s) \end{bmatrix}$$

300

ARRL Pacificon, San Ramon, CA

Matching Network Impedance Matrix

• Let Z_A be

$$Z_{A} = \begin{bmatrix} z_{11}^{A} & z_{12}^{A} \\ z_{21}^{A} & z_{22}^{A} \end{bmatrix}$$

• Then Z_M is found to be

$$Z_{M} = \begin{bmatrix} z_{11}^{M} & z_{12}^{M} \\ z_{21}^{M} & z_{22}^{M} \end{bmatrix} = \begin{bmatrix} z_{22}^{A^{*}} & z_{12}^{A^{*}} \\ z_{21}^{A^{*}} & z_{11}^{A^{*}} \end{bmatrix} = Z_{A}^{\setminus H}$$
Hermitian antitranspose

where by reciprocity

$$z_{12}^A = z_{21}^A$$
 so that $z_{12}^M = z_{21}^M$

301 Steve Stearns, K6OIK

$$Z_{in} = R_A$$

ARRL Pacificon, San Ramon, CA

Continued Fraction Expansion for *Z_{in}*

ARRL Pacificon, San Ramon, CA

Realization as Cascaded Ladder Networks

$$Z_{in} = R_A$$

Cascade Inversions Using NICs and NIVs

Comments

- The canonical forms define a synthesis procedure (a recipe) for making broadband impedance matching networks for arbitrary passive loads
- Commutative property

$$\frac{1}{\Delta} \begin{bmatrix} D(s) & -B(s) \\ -C(s) & A(s) \end{bmatrix} \begin{bmatrix} A(s) & B(s) \\ C(s) & D(s) \end{bmatrix} = I = \begin{bmatrix} A(s) & B(s) \\ C(s) & D(s) \end{bmatrix} \frac{1}{\Delta} \begin{bmatrix} D(s) & -B(s) \\ -C(s) & A(s) \end{bmatrix}$$

$$T^{-1} T = T T^{-1}$$

- The formal inverse network can be placed on either side of the antenna's reactance 2-port, i.e. the matching network can be placed between it and the load resistor
 - An antenna can be matched by using a non-Foster feedpoint network or a non-Foster shell (cap or radome)

Example 1: Bent Blade Antenna

ARRL Pacificon, San Ramon, CA

Bent Blade Antenna Feedpoint Impedance

308

Antenna SWR Before Matching

309

Bent Blade Equivalent Circuits and Matching Networks

ARRL Pacificon, San Ramon, CA

Match Results Using Non-Foster Networks

Example 2: Broadband Antenna

ARRL Pacificon, San Ramon, CA

Antenna Impedance to 3 GHz

Antenna SWR to 700 MHz

Non-Foster Match Networks for 15 to 600 MHz Band

ARRL Pacificon, San Ramon, CA

Match Results Using Non-Foster Networks A and B

A Close-Up View: SWR After Matching

317 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Stable Non-Foster Match Network Designs

318 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

Rohde & Schwarz HE010 Active Monopole

Computed Monopole Impedance

ARRL Pacificon, San Ramon, CA

Fano Match Bandwidth Limit vs Match SWR

Steve Stearns, K6OIK

321

ARRL Pacificon, San Ramon, CA

The Non-Foster Match Circuit

- Circuit topology has 3 elements
- A series negative capacitor
- Followed by a positive L network
- No transformers or "dualizers"

Steve Stearns, K6OIK

322

ARRL Pacificon, San Ramon, CA

Receive Noise Tests

- Noise test compared RS HE010 active preamplifier against non-Foster negative capacitor match network when connected to antenna impedance emulator
- Noise tests performed by injecting tone from 50-ohm source into Port 2 of emulator and measuring SNR at RS preamp or non-Foster network output with a spectrum analyzer
- Frequency stepped from 19 MHz to 23 MHz
- Non-Foster network's 3-dB insertion bandwidth is 3.68 MHz (18.92 to 22.60 MHz)
- Non-Foster match bandwidth exceeds the maximum theoretical Fano match bandwidth for matching this antenna using passive lossless networks

De-embedded calculation
Output SNR Comparison

De-Embedded Noise Figure

Receive Noise Comparison

- The pass band of each match circuit is evident from its noise floor
- Non-Foster network exceeds R&S preamplifier from 15 to 28 MHz

AM Modulation Test 2

Test signal from signal generator

- Carrier: 20.1 MHz
- Modulation: AM 80%
- Modulation signal: 400 Hz sine wave
- Signal generator: Agilent E8257D
 - Some harmonics of the modulation tone are evident but do not affect matching circuit performance measurements
- Signal will be transmitted through a loop antenna and received by the monopole with matching circuit

Test Setup

- The noise floor of R&S HE010 preamplifier is below or close to the noise floor of the spectrum analyzer
- An amplifier was inserted in the receive chain to raise the noise floor (same as for tests with Antenna Emulator).

R&S HE010 Preamplifier

<u>11 -60</u>	. OdBm	10dB/	20	. 100000MH	+z
			Ŷ		
		-39.55 dB/Hz			
				Noise Floor -131.9dBm/Hz -133.7dBm	
mmm	mount	monorm	handhanderhan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mummer in

CENTER 20.099948MHz

SPAN 1.000KHZ

Non-Foster Match Network

CENTER 20.099948MHz

SPAN 1.000KHz

332

Comparison

I have			1						
					L				
					Ŷ				
×.	-								
					8				
www.www.www.	a show where	whome who we	Mar Marthall	happen	Mar Marry	- Amarana Mark	www.www.www	mannan	mmm
www.	marter and	whent	Munner	www.www.w	wanty	munned	Mannah	an and Man	mant

CENTER 20.099948MHz

SPAN 1.000KHz

Divergent Findings on Noise of Non-Foster Match Circuits

• Sussman-Fort et al. (2009):

With receivers, we have experimentally confirmed, on the antenna range, orderof-magnitude improvement in signal to-noise ratio as compared to the best passive match."

• Stearns (measurements, 2009):

"Non-Foster match gives greater SNR than the R&S preamplifier by a few dB."

Best (Allerton AAS, 2012):

* "Non-Foster matching offers significant NF improvement. Knowledge of Non-Foster NF is critical in system NF analysis and antenna optimization."

Minu et al. (APS-URSI, 2013):

"While the current noise figure is high, we hope to improve this circuit to achieve improved SNR in received signals."

• Stedler et al. (ISAP, 2014):

"… a NIC circuit as matching element for short active car antennas would degrade the overall SNR performance, compared to a conventional active antenna system… A disadvantage of 6-8 dB in SNR of the NIC-circuit results in comparison with a conventional active antenna."

• Nagarkoti et al. (EuCAP, 2015):

* "The SNR improvement across the frequency band of 100 MHz to 500 MHz is significant except at certain frequencies as shown in Fig. 6... Up to 8 dB SNR improvement has been observed with the non-Foster matching across the frequency band of interest."

Electrically Small Loop Antenna

A.H. Systems SAS-563B active shielded loop antenna, 1-ft diameter

Design frequency band: 100 kHz to 200 kHz

Manufacturer's preamplifier removed and replaced with non-Foster match circuit

Non-Foster Match Circuit

Negative inductor realized by Yanagisawa NIC

Antenna Response to White Input Noise

Trace A

337

Stability of Non-Foster Circuits

- Stearns (2010) showed among circuits made of just R, ±L, ±C, the unstable circuits form a dense subset – analogous to irrational numbers compared to real numbers
- Stearns (2011, 2012) showed counterexample circuits for which unconditional stability 2-port tests always report wrongly on stability and opposite on unconditional stability
 - Moreover, no improvement to Rollett's criteria or proviso can fix the problem
- Literature on 2-port unconditional stability is defective
- Only stability tests that consider full internal description of a circuit can report stability correctly
- Nonlinear stability is also important
- Three forms of instability have been observed
 - Oscillation
 - Lock up
 - Chaos
- S. Hrabar (2015) showed ideal negative capacitors and inductors are fundamentally flawed concepts and will always be unstable in physical systems
 - These elements should be avoided in active circuit theory
- Stearns (2015) showed alternative new elements that solve the theoretical problem and lead to provably stable non-Foster circuits
 - \blacktriangleright Ideal negative capacitors \rightarrow Bandpass negative capacitors
 - \blacktriangleright Ideal negative inductors \rightarrow Bandpass negative inductors

Bandpass Negative Inductor

339 Steve Stearns, K6OIK

Bandpass Negative Capacitor

$$L_1 = \frac{1}{(\omega_0 - \Delta)^2 (-C)}$$
 and $L_2 = \frac{1}{(\omega_0 + \Delta)^2 (-C)}$

where

Stable Non-Foster Bandwidth Exists

- By continuity, there exists a $\delta > 0$ such that if $0 < \Delta < \delta$, then $0 < |d(\Delta) d_0| < d_0$
- The circuit is stable and exhibits desired non-Foster behavior over bandwidth $2\Delta = 2\delta$

Pause for demonstration

Microwave Office simulation demonstrating a "bandpass non-Foster" match to a dipole antenna and stability according to a Nyquist criterion

Bandpass Non-Foster L Match Network

SWR of Bandpass Non-Foster Match

Unwrapped Phase Angle of Admittance Determinant

345

Conclusions

- The set of networks exhibiting Non-Foster behavior is bigger than the set of networks that have non-Foster elements
- Negative capacitors and negative inductors are not required to realize a non-Foster network
- Stable non-Foster circuits have been made and reported
 - S.E. Sussman-Fort
 - S.D. Stearns
 - > C. White
 - > others
- Stable non-Foster design requires using accurate device models, correct linear stability tests, and perhaps nonlinear stability analysis
- Transistor biasing methods and levels are important
- Match bandwidth greater than the Fano limit was observed for match networks for a monopole and a loop
- Rules of thumb for ensuring a stable design were found

Resources for Impedance Match Network Design

A list of useful software tools with links is at <u>http://www.fars.k6ya.org/others#Software</u>

How to Get The Joy of Matching

A Practical Introduction ^{to}Impedance Matching Robert L. Thomas

Cirtech Course

- Get a copy of Wilfred N. Caron, Antenna Impedance Matching, ARRL, 1989, or 1993 edition with errata page
- Get a Smith Chart utility program (next slide)
- Work through all 11 example matching problems in the book
 - Confirm Caron's solution
 - Try to find better solutions
- Study R.L. Thomas, A Practical Introduction to Impedance Matching, Artech House, 1976
- Study A.R. Lopez, "Impedance Matching Equation: Developed Using Wheeler's Methodology," IEEE Long Island Section APS, Dec. 2013. (free pdf download)

Software for Smith Charting and Network Design

- *SimSmith* 14.9 by Ward Harriman AE6TY, 2016
 - Free download from <u>http://ae6ty.com/Smith_Charts.html</u>
- Smith Chart Calculator 2.1 by Gorik Stevens, 2015
 - Free download from <u>http://sourceforge.net/projects/gnssmithchart</u>

JJSmith 2.12, James Bromley K7JEB & James Tonne W4ENE (SK), 2015

- Free download from <u>http://tonnesoftware.com/jjsmith.html</u>
- QuickSmith 5.0.1 by Nathan Iyer KJ6FOJ, 2014
 - Free download from <u>https://code.google.com/p/quicksmith</u>

IinSmith 0.99.26 by James Coppens ON6JC/LW3HAZ, 2013

- Free download from <u>http://jcoppens.com/soft/linsmith/index.en.php</u>
- Smith 3.10 by Fritz Dellsperger HB9AJY, 2010
 - Free download from <u>http://fritz.dellsperger.net</u>
- FKSmith 1.15 by Fabian Kung, 2006
 - Free download from <u>http://pesona.mmu.edu.my/~wlkung</u>
- XLZIZL by Dan Maguire AC6LA, 2005. No longer available.
- WinSMITH 2.0, Noble Publishing, 1995. No longer available.
- MicroSmith 2.3, ARRL, 1992. No longer available.

Smith Chart Programs Assist Ladder Network Match Design

Smith Chart Program Features Comparison

Program	Import files?	Export files?	Tuning sliders?
SimSmith 14.9	Yes, Touchstone	Yes, Touchstone	Yes
Smith Chart Calculator 2.1	No	No	No
JJSmith 2.12	No	No	No
QuickSmith 5.0.1	Yes, .gam	Yes, .gam	Yes
Smith 3.10	Yes, Touchstone	Yes, Touchstone	No
FKSmith 1.15	No	No	No
winSMITH 2.0	No	No	Yes

http://www.eda.org/ibis/touchstone_ver2.0/touchstone_ver2_0.pdf http://www.eda.org/pub/ibis/connector/touchstone_spec11.pdf

352

General RF Circuit Design, Analysis, and Optimization

ANSYS Product Suite

Steve Stearns, K6OIK

Software for Radio Amateurs

- > LTspice IV 4.23, Linear Technology, 2015
 - Free download from http://www.linear.com/designtools/software
- > Quite Universal Circuit Simulator (QUCS) 0.0.18, 2014
 - Free download from http://qucs.sourceforge.net
- Serenade SV 8.5 (student version), Ansoft, 2000. Still available on web. See article by David Newkirk W9VES in QST, Jan. 2001
- ARRL Radio Designer 1.5, ARRL, 1995. No longer available.
- Professional electronic design automation (EDA) software
 - > Advanced Design System (ADS), Keysight (formerly Agilent)
 - Microwave Office (MWO), National Instruments, Applied Wave Research
 - High Frequency System Simulator (HFSS), ANSYS (formerly Ansoft Designer and Serenade)

Ansoft Serenade SV Described in *QST*, January 2001

By David Newkirk, W9VES

Simulating Circuits and Systems with Serenade SV

Teaming linear and harmonic-balance nonlinear circuit simulation of amplifiers, mixers and oscillators with system-level analysis of digital communication systems, Serenade SV is like having an RF/microwave communications lab in your computer-and it's free!

C reflects, computer-aided antenna modeling is well-established as a popular Amateur Radio activity, fueled by the free availability of core programs (NEC and MININEC) capable of realistic antenna modeling.1 Radio amateurs interested in using their computers for realistic radio and electronic *circuit* simulation have similarly benefited from the free availability of SPICE, developed at the University of California at Berkeley. Proprietary alternatives to NEC, MININEC and SPICE are available, of course-at costs that generally put them well beyond the reach of students and hobbyists. ARRL Radio Designer, a feature-limited version of one such product (Super-COMPACT, a linear circuit simulator) brought realistic, affordable modeling of RF circuits to the market in 1994-if you didn't mind its netlist circuit entry, its lack of even the most basic distributed circuit components (microstrip and stripline structures, essential to useful UHF/microwave circuit modeling), and its inability to simulate any of the nonlinear effects without which a radio can't radio. What radio amateurs and electronics students really need is a free nonlinear and NT 4.0 and includes:2 circuit simulator that, unlike free versions of SPICE, incorporates essential radio-modeling components and capabilities because it has been designed for RF/microwave/wireless use from its beginning. This article introduces that simulator,

Notes appear on page 43

Serenade SV. A feature-limited version of Ansoft Corporation's industry-standard Serenade Design Environment, Serenade SV runs on Windows 95, 98, 2000, ME * A harmonic-balance nonlinear circuit simulator (Harmonica SV) · A discrete-time system simulator (Symphony SV) · Graphical circuit entry (schematic

capture) · Linear and nonlinear circuit tuning

· Linear circuit optimization · Nonlinear oscillator design and analysis

· Two-tone nonlinear analysis, including

mixing and intermodulation distortion (IMD)

- · Small-signal ac nonlinear analysis Stability analysis
- · Waveform, modulation, sweep, bit-error rate, and statistical properties analysis · Interactive, graphical matching-network synthesis
- · A transmission-line calculator

· RF-critical circuit components, including black boxes (up to four ports), distributed elements (ideal, coaxial, microstrip and stripline transmission lines, coupled lines and bends), controlled sources, transformers, filters

UST- January 2001 37

Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Professional Impedance Matching Software for Automatic Design

Ampsa Impedance-Matching Wizard (IMW)

- Developed by Pieter L.D. Abrie
- http://www.ampsa.com

Optenni Lab

- Developed by Jussi Rahola
- https://www.optenni.com

Nuhertz Zmatch

http://www.nuhertz.com

AMPSA

Optenni

Comments on Software

All Smith chart programs

- Can draw impedance data on a Smith chart with Z and Y grids
- Allow the user to define ladder networks and see the effect on an impedance locus

• A good Smith chart program

- Has tuning sliders that allow changing parts values and seeing results instantly
- Allows you to import impedance data as Touchstone .s1p files
- Can convert impedance data from different file formats to Touchstone .s1p file format
- Can export impedance data as Touchstone .s1p files

• A good circuit analysis program

- Can draw impedance data on a Smith chart with Z and Y grids
- Can import and export impedance data in Touchstone .SnP formats (.s1p, .s2p, etc.)
- Allows analysis and design of arbitrary network topologies, more complicated than ladder networks, e.g. twin-T, bridged-T, and lattice networks
- Has a robust optimizer such as the Nelder-Mead "amoeba" or "nonlinear simplex" algorithm that can numerically search for optimum parts values that satisfy a user-defined goal criterion

Resources for Antenna Modeling

Antenna Modeling Programs for Radio Amateurs

EZNEC <u>http://www.eznec.com</u>

- EZNEC v.6 Demo program
- EZNEC v.6
- EZNEC+ v.6
- EZNEC Pro/2 v.6
- EZNEC Pro/4 v.6

Free (20 segments, also runs ARRL models)

- \$100 (500 segments)
- \$150 (2,000 segments)
- \$525 (45,000 segments)
- \$675 (sold only to NEC4 licensees)
- 4nec2 <u>http://www.qsl.net/4nec2</u>
 - Free, 11,000 segments, two optimizers, all NEC commands available
- MININEC <u>http://www.w8io.com/mininec.htm</u> or <u>http://www.blackcatsystems.com/software</u>
 - Black Cat Systems offers MiniNEC Pro version 1.4.0, \$29
- MMANA-GAL <u>http://hamsoft.ca/pages/mmana-gal.php</u>
 - Free Basic version 8,192 segments. Pro version 32,000 segments, \$130
- NEC4 <u>https://ipo.llnl.gov/technologies/nec</u>
 - Noncommercial user license \$300

FEKO Student Edition <u>http://www.altairuniversity.com/feko-student-edition</u>

- Free to students. Part of HyperWorks 14 Student Edition
- WiPL-D <u>http://www.wipl-d.com</u>
 - Free "Microwave Lite" v6.0 (665 unknowns) and free 30-day trial of professional v13.0
- HOBBIES <u>http://em-hobbies.com</u>
 - Book includes software registration code, online price varies from \$125 to \$231 MSRP
- MEFiSTo <u>http://www.faustcorp.com</u>
 - Free 2D basic version and free trial of 3D professional version

Accessory Software for EZNEC

- AutoEZ 2.0.18 by Dan Maguire, AC6LA, <u>http://www.ac6la.com</u>
 - Excel/Visual Basic program
 - Demo version, free (30 segment limit)
 - Regular version, \$79
 - Requires Excel and EZNEC installed on computer
 - Controls EZNEC to make multiple runs
 - A GUI for a GUI for NEC
 - Has optimizer Nelder-Mead algorithm
 - Reads NEC, AO, and MMANA-GAL files
 - Doesn't work with EZNEC-ARRL or EZNEC Demo
 - Replaces MultiNEC, which is no longer available

HOBBIES

HIGHER ORDER BASIS BASED INTEGRAL EQUATION SOLVER [HOBBIES]

YU ZHANG • TAPAN K. SARKAR • XUNWANG ZHAO • DANIEL GARCIA-DOÑORO WEIXIN ZHAO • MAGDALENA SALAZAR-PALMA • SIOWENG TING

http://em-hobbies.com

- Y. Zhang, et al., Higher Order Basis Based Integral Equation Solver (HOBBIES), Wiley, 2012, ISBN 9781118140659
- Make sure to buy a new copy with software license registration code intact and unused
Favorite Antenna Books

Antennas Fr All Agriculture

Books for antenna engineers and students

- C.A. Balanis, Antenna Theory: Analysis and Design, 4e, Wiley, 2016
- R.C. Hansen and R.E. Collin, Small Antenna Handbook, Wiley, 2011
- Modern Antenna Handbook, C.A. Balanis, editor, Wiley, 2008
- Antenna Engineering Handbook, 4e, J.L. Volakis, ed., McGraw-Hill, 2007
- J.D. Kraus and R.J. Marhefka, Antennas, 3e, McGraw-Hill, 2001

Antenna research papers

- IEEE AP-S Digital Archive, 2001-2009 (1 DVD), JD0307
- IEEE AP-S Digital Archive, 2001-2006 (1 DVD), JD0304
- IEEE AP-S Digital Archive, 2001-2003 (1 DVD), JD0301
- IEEE AP-S Digital Archive, 1952-2000 (2 DVDs), JD0351
- **ACES Journal Archives**
 - http://www.aces-society.org/journal.php

Free Downloadable Books from "Amateur Radio Resources that Save Space"

- P-S. Kildal, *Foundations of Antenna Engineering*, 2015
 - http://kildal.se/index.php/news-page/28-book
- S.J. Orfanidis, *Electromagnetic Waves and Antennas*, Rutgers U., 2008
 - http://www.ece.rutgers.edu/~orfanidi/ewa
- C.A. Balanis, Antenna Theory: Analysis and Design, 3e, Wiley, 2005
 - https://archive.org/details/Antenna.Theory.Analysis.and.Design3rd.Edition
- J. Layton, *Directional Broadcast Antennas: A Guide to Adjustment,...*, TAB Books, 1974
 - http://www.americanradiohistory.com/Archive.../Directional-Broadcast-Antennas-Leyton.pdf
- A.D. Watt, VLF Radio Engineering, Pergamon Press, 1967
 - http://www.introni.it/pdf/Watt%20-%20VLF%20Radio%20Engineering%2014.pdf
- G.Z. Ayzenberg, Shortwave Antennas, revised edition, translated from Russian, 1962
 - http://www.dtic.mil/docs/citations/AD0706545
- S. Seely, *Radio Electronics*, McGraw-Hill, 1956
 - https://archive.org/details/RadioElectronics
- S.A. Schelkunoff and H.T. Friis, Antennas: Theory and Practice, Wiley, 1952
 - https://archive.org/details/antennastheorypr00sche
- E.A. Laport, Radio Antenna Engineering, McGraw-Hill, 1952
 - http://snulbug.mtview.ca.us/books/RadioAntennaEngineering
- K. Henney, Radio Engineering Handbook, McGraw-Hill, 1950
 - https://archive.org/details/radioengineering00henn
- F. Langford-Smith, The Radiotron Designers Handbook, Wireless Press, 1941
 - https://archive.org/details/radiotrondesigne00lang
- K. Henney, *Principles of Radio*, Wiley, 1934
 - https://archive.org/details/principlesofradi00henn

Favorite Antenna Books continued

- ARRL Antenna Book, 23e, H.W. Silver, N0AX, editor, American Radio Relay League, 2015
- Rothammel's Antennenbuch, 13e, A. Krischke, DJ0TR, editor, DARC Verlag, 2013
- J. Devoldere, ON4UN, ON4UN's Low-Band Dxing, 5e, American Radio Relay League, 2011
- Practical Wire Antennas 2, I. Poole, G3YWX, editor, Radio Society of Great Britain, 2005
- J. Sevick, W2FMI, The Short Vertical Antenna and Ground Radial, CQ Communications, 2003
- L. Moxon, G6XN, HF Antennas for All Locations, 2e, RSGB, 1983

ARRL Antenna Compendium series – eight volumes

ARRL Antenna Classics series – eight titles

ARRL Pacificon, San Ramon, CA

October 14-16, 2016

Recent Antenna Books of Interest

R.C. Hansen and R.E. Collin, *Small Antenna Handbook*, Wiley, 2011

Y. Zhang et al., *Higher Order Basis Based Integral Equation Solver* (HOBBIES), Wiley, 2012

Elsherbeni et al., *Antenna Analysis and Design using FEKO*..., SciTech / IET, 2014

C.A. Balanis, *Antenna Theory: Analysis and Design*, 4e, Wiley, 2016

H.W. Silver, N0AX, Antenna Modeling for Beginners, ARRL, 2012

ROTHAMMELS BUCH Als Griede Dort

A. Krischke, DJ0TR, ed., *Rothammels Antennen Buch*, 13e, DARC, 2013

S. Nichols G0KYA, An Introduction to Antenna Modelling, RSGB, 2014

ARRL Antenna Book, 23e, ARRL, 2015

Four Good History Reads

Nancy Forbes and Basil Mahon, *Faraday, Maxwell, and the Electromagnetic Field,* Prometheus, 2014 Bruce J. Hunt, *The Maxwellians*, Cornell University Press, 1991

Ernest Freeberg, *The Age of Edison*, Penguin Books, 2014 W. Bernard Carlson, *Tesla: Inventor of the Electrical Age*, Princeton University Press, 2015

The End

This presentation will be archived at

http://www.fars.k6ya.org/others

366 Steve Stearns, K6OIK

ARRL Pacificon, San Ramon, CA

October 14-16, 2016