New Results on Antenna Impedance Models and Matching

Steve Stearns, K6OIK Northrop Grumman Electromagnetic Systems Laboratory San Jose, California <u>stearns@ieee.org</u>

<u>k6oik@arrl.net</u>

1

Electromagnetic Cloaking

- Idea introduced in the Star Trek television series, episode 9, on December 15, 1966, which featured a Romulan Bird Of Prey
- Practical technique presented at Pacificon Antenna Seminar, October 13, 2006
- Laboratory proof announced by Duke University on October 17, 2006

Outline

- Antenna impedance models
- SWR basics
- Why not conjugate match?
- Impedance matching networks
 - Multi-band match networks
 - Networks that give extremely broad match bandwidths
- Interesting antennas
- Terrain effects by computational electromagnetics
 - Meshing Silicon Valley

Antenna Impedance Models

Sidney Darlington, 1906-1997

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

Darlington Forms (1939)

- Every immittance function can be realized as a lossless twoport terminated by a resistor
- Every antenna impedance function has an equivalent circuit in Darlington form

- The Darlington form is the starting point for interesting results in network and matching theory
 - The Fano (1947) and Carlin-LaRosa (1952) bounds on impedance matching
 - Constant resistance reflectionless impedance matching networks
 - Non-Foster active impedance matching networks

Impedance Models for Electrically-Small Dipoles & Monopoles

7

Broadband Models of Dipole Impedance

That Span Multiple Resonances

Schelkunoff's Universal Antenna Impedance Models

- Schelkunoff (1941) gave universal impedance models for a two broad classes of antennas
- Cascaded transmission lines terminated by a TE₁₀ or TM₁₀ mode impedance (e.g. loops or dipoles)

Foster's 1st Canonical Form with Small Losses Added

- Ramo, Whinnery, and Van Duzer, *Fields and Waves in Communication Electronics*, Wiley, 1965, Section 11.13
- Was applied to antennas by Tang-Tieng-Gunn (1993), Hamid-Hamid (1997), Rambabu-Ramesh-Kalghatgi (1999)
- Fits dipole impedance best near antiresonances

Accuracy of Hamid & Hamid's Equivalent Circuit

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

Accuracy of Hamid & Hamid's Equivalent Circuit

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

Foster's 2nd Canonical Form with Small Losses Added

- Ramo, Whinnery, and Van Duzer, *Fields and Waves in Communication Electronics*, Wiley, 1965, Section 11.13
- Fits dipole impedance best near resonances

Accuracy of Foster's 2nd Form With Small Losses

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

Accuracy of Foster's 2nd Form With Small Losses

ARRL Pacificon Antenna Seminar, San Ramon, CA

Long, Werner, & Werner's Broadband Model (2000) Frequency Scaled to $f_0 = 5$ MHz, $\Omega' = 7.8$

ARRL Pacificon Antenna Seminar, San Ramon, CA

Accuracy of Long, Werner, & Werner's Model

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

Accuracy of Long, Werner, & Werner's Model

ARRL Pacificon Antenna Seminar, San Ramon, CA

Streable & Pearson's Broadband Equivalent Circuit Frequency Scaled to $f_0 = 5$ MHz, $\Omega' = 10.6$

Accuracy of Streable & Pearson's Equivalent Circuit

Accuracy of Streable & Pearson's Equivalent Circuit

ARRL Pacificon Antenna Seminar, San Ramon, CA

Antennas Ring at Many Frequencies (Like Bells)

- Tesche (1973) derived antenna TM modes by SEM
- Distributed and electromagnetic systems are infinitedimensional linear systems

Equivalent Circuits for Transcendental Immittances

 Schelkunoff (1944), Zinn (1952): Transcendental immittances of continuous electromagnetic structures can be represented by ladder networks made of one of four subcircuits

K6OIK's Broadband Equivalent Circuit

Accuracy of K6OIK's Broadband Equivalent Circuit

ARRL Pacificon Antenna Seminar, San Ramon, CA

October 19-21, 2007

Accuracy of K6OIK's Broadband Equivalent Circuit

Comparison of Antenna Impedance Models

Antenna Impedance Model	Approximation Accuracy	Realizable Equivalent Circuit	Darlington Form	Element Types	Maximum Frequency Range
Series RLC	fair	yes	yes	R, L, C	0.94 <i>f</i> ₀ to 1.05 <i>f</i> ₀
Witt model	good	no	yes	<i>R</i> (<i>f</i>) and TL stub	0.6 <i>f</i> ₀ to 1.2 <i>f</i> ₀
K6OIK 3-Element	good	yes	yes	<i>R, L,</i> C	0.90 <i>f</i> ₀ to 1.08 <i>f</i> ₀
Tang-Tien-Gunn 4-Element	excellent	yes	yes	R, L, C	DC to 1.4 <i>f</i> ₀
K6OIK 4-Element	excellent	yes	yes	<i>R,L,C</i> ,TL	DC to 1.4 <i>f</i> ₀
K6OIK 5-Element	excellent	yes	yes	<i>R, L, C</i>	DC to 1.4 <i>f</i> ₀
Fosters 1 st Form with small losses	poor, best near antiresonances	yes	no	R, L, C	no limit
Fosters 2 nd Form with small losses	poor, best near resonances	yes	no	R, L, C	no limit
Long-Werner- Werner	fair	no	no	<i>R, C</i> , TL	5 octaves
Streable-Pearson	good	yes	no	R, L, C	no limit
K6OIK Broadband		yes JII Antenna Seminar	NO , San Ramon, CA	R, L, C	no limit

Standing Wave Ratio Basics

Question – Do the Meters Read the Same SWR?

Answer

For lossless lines:

- Forward and reverse wave amplitudes are the same everywhere along the line
- SWR is the same everywhere along the line
- SWR is the ratio of max to min voltage (or current)

For lossy lines

- Forward and reverse wave amplitudes vary along the line
- SWR is maximum at the load and decreases gradually to a minimum at the source
- The "max / min" definition of the lossless case doesn't work

> Best definition is

$$SWR = \frac{1 + \sqrt{\frac{P_R}{P_F}}}{1 - \sqrt{\frac{P_R}{P_F}}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

ARRL Pacificon Antenna Seminar, San Ramon, CA

Voltage and Current Standing Waves

Impedance and SWR Along a Line

A Nomogram Relating Input and Output SWR

S.D. Stearns, K6OIK

ARRL Pacificon Antenna Seminar, San Ramon, CA

October 19-21, 2007

Standing Wave Ratio at a Resistive Load

Losses Are Due to Reflection and Dissipation

$$P_{F1} \rightarrow P_{F2}$$

$$P_{R1} \rightarrow P_{R2}$$

$$IL_{dB} = ML_{dB} + DL_{dB}$$

Lossless networks

Reflectionless networks

$$DL_{dB} = 0 \qquad ML_{dB} = 0$$
$$IL_{dB} = ML_{dB} \qquad IL_{dB} = DL_{dB}$$

Reflection Loss of a Terminated Line vs Input SWR

S.D. Stearns, K6OIK

ARRL Pacificon Antenna Seminar, San Ramon, CA

October 19-21, 2007
Dissipation Loss of a Terminated Transmission Line

Dissipation Loss =
$$10 \log \left(\frac{\frac{1}{A} - A |\Gamma_{Load}|^2}{1 - |\Gamma_{Load}|^2} \right) dB$$

where

 $A = 10^{-\alpha l/1000} < 1 = \text{power attenuation ratio}$ $\alpha = \text{line attenuation rate in dB/100 ft}$ l = line length in feet $\left|\Gamma_{Load}\right| = \frac{SWR_{Load} - 1}{SWR_{Load} + 1}$

 Reference: ARRL Antenna Book, 21st ed., p. 24-10, eq. 16 with A = 1/a

Dissipation Loss =
$$10 \log_{10} \left(\frac{1 - |\Gamma_{Tx}|^2}{A - \frac{1}{A} |\Gamma_{Tx}|^2} \right) dB$$

where

 $A = 10^{-\alpha l/1000} < 1 = \text{power attenuation ratio}$ $\alpha = \text{line attenuation rate in dB/100 ft}$ l = line length in feet $\left|\Gamma_{Tx}\right| = \frac{SWR_{Tx} - 1}{SWR_{Tx} + 1}$

Reference: ARRL Antenna Book, 22nd ed. ?

A Nomogram for Finding Additional Loss Due to SWR

October 19-21, 2007

Myths and Bloopers

Impedance formula for open wire line

- > $Z_0 = 276 \log_{10}(2s/d) = 120 \log_e(2s/d)$ versus 120 cosh⁻¹(s/d)
- "Z₀ approaches 83 ohms as s/d approaches unity." George Murphy, VE3ERP, CQ, Nov. 2000

Return loss

- "Return Loss is 20 times the reflection coefficient." Kurt N. Sterba, World Radio, Jan, 2007
- "Return Loss is not a commonly used quantity." Brice Wightman, VE3EDR, VA2BW, World Radio, May 2007
- "Return Loss is 20 times the reciprocal of the reflection coefficient." Kurt N. Sterba, World Radio, June 2007

Conjugate match

- Numerous theorems of circuit theory incorrectly stated
- Poor reasoning and incorrect conclusions at every turn

Impedance Formulas for Open-Wire Line

S.D. Stearns, K6OIK

ARRL Pacificon Antenna Seminar, San Ramon, CA

$$\begin{array}{c|c} Z_1 \\ Z'_1 \\ \end{array} \end{array} \begin{array}{c} \mathbf{2}\text{-Port} \\ \hline \mathbf{Z}'_2 \\ \hline \mathbf{Z}'_2 \end{array}$$

- A conjugate match at the input does not imply a conjugate match at the output (load) and vice versa unless the 2-port is lossless
- Conjugate matching in long transmission line systems leads to reduced system bandwidth – not good for communication except for narrowband signals, and poor for digital modulations
- The goal of communication is information transmission, not power transmission. Digital modulations hate distortion caused by echoes, multipath, and reflections
- Solid state amplifiers are designed for stability by various methods, e.g. unilateralization, load-pull, source-push – to prevent oscillation !
- Conjugate matching plays no particular role in output impedance selection

Transducer Power Gain

 Maximum power delivery from a given source through a general 2-port to a load is achieved by maximizing "Transducer Power Gain," not by conjugate matching at input or output

$$G_{T} = \frac{\text{Power delivered to load}}{\text{Power available from source}}$$
$$= \frac{|S_{21}|^{2} (1 - |\Gamma_{S}|^{2}) (1 - |\Gamma_{L}|^{2})}{|(1 - S_{11}\Gamma_{S}) (1 - S_{22}\Gamma_{L}) - S_{12}S_{21}\Gamma_{L}\Gamma_{S}|^{2}}$$

Don't use this fact to match a solid state amplifier to a load, unless you want an oscillator !

Multi-Band Match Networks

Three-Band Match Network

- Ward Silver (N0AX) proposed to design an antenna for the 75, 60, and 40 meter bands
- K6OIK's easy solution: Take an existing antenna and design a feedpoint match network for the three bands
- Antenna: 98.4-foot wire dipole antenna resonant at 4.868 MHz – nothing special
- Frequencies: 3.9 MHz; 5.35 MHz; and 7.2 MHz
- Design goal: SWR = 1 at these three frequencies

Dipole Impedance

Dipole Impedance on the Smith Chart

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

Dipole SWR Before Matching

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

48

Dipole SWR Before Matching

Circuit of Three-Band Match Network

Impedance After Matching

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

SWR After Matching

Question

Can a fixed (non-tunable) impedance-matching network provide unity SWR at all frequencies?

Reflectionless Broadband Impedance Matching

Constant-Resistance Networks Non-Foster Active Networks

Edward Lawry Norton, 1898-1983, photo 1925

S.D. Stearns, K6OIK ARRL Pacificon Antenna Seminar, San Ramon, CA October 19-21, 2007

The Idea

Traditional impedance-matching networks are "reflection" filters that create reflected waves

Subject to the Fano bound

Constant-resistance reflectionless networks

- Developed by E.L. Norton (1937)
- Have unity SWR over a wide band
- Are "diplexers" that divide power between two loads
- Rated by insertion-loss bandwidth instead of SWR bandwidth
- Side-step the Fano bound but are subject to the Carlin-LaRosa bound

How to Do It

- Step 1: Shorten "half-wave" dipoles or lengthen "quarter-wave" monopoles so that R₄ = 50 ohms
 - > Dipoles: Use $K \approx 0.86$, or $L \approx 0.43\lambda$
 - > Monopoles: Use $K \approx 1.07$, or $L \approx 0.27\lambda$
- Step 2: Insert a series reactance to cancel feedpoint reactance
 - Dipoles: Add a series inductor
 - Monopoles: Add a series capacitor
- Step 3: Insert a shunt network to yield a 50-ohm constant-resistance network

Antenna Impedance on the Smith Chart

Example 1: Reflectionless Match to 0.43 λ Dipole

Network Performance on Dipole Impedance Data

- Frequency sweep 1 to 8 MHz
- Maximum SWR = 1.04
- Input resistance: 48.8 to 51.2 ohms
- Input reactance: -2.1 to 0 ohms

October 19-21, 2007

Power Delivered to the 0.43 λ Dipole

- Pattern gain = 0.11 dBd
- Minimum insertion loss = 0 dB
- 100% power delivery at 4.3 MHz
- 3-dB Bandwidth = 259 kHz (6.0%)
- 0.51-dB Bandwidth = 91 kHz (2.1%)

Interesting Antennas

John Daniel Kraus, 1910-2004

Chen-To Tai, 1915-2004

Ronold Wyeth Percival King, 1905-2006

R.W.P. King speaking at his 100th birthday party, Oct. 2005.

Sergei Alexander Schelkunoff, 1897-1992

Amateur Antenna Paradigms

- Antennas made of straight elements (wires, rods, and tubes)
- Antennas made of conductors (metals)
- Resonant antennas
- Narrowband antennas
- But ... many interesting and novel antennas break these rules!
- And some strange antennas don't ...

Landstorfer Antenna (1976)

- Elements: 3
- Element shape: Optimized (approximately Gaussian)
- Gain: 11.5 dBi
- Sidelobes: < -20 dB</p>
- F/B ratio: 26 dB
- Performance similar to 10element Yagi – except...
- Bandwidth: > 3% (W4RNL)

Folded Hemi-Spherical Helix Over Ground Plane (2004)

- Helix: 4 arms, 1 turn
- Height (radius): $\lambda/16.5$
- Frequency: 300 MHz
- Polarization: vertical
- Z: 50 ohms real
- SWR: < 1.16
- Efficiency: > 94%
- Bandwidth: 22.8 MHz (7.6%)

•
$$Q_A$$
: 32 (Q_{Chu} = 22.8)

Polyrod Antenna (1947)

- Material: Polystyrene
- Frequency: 11.6 GHz
- Gain: 20 dBi
- Bandwidth: 40%

Dielectric rods made of ceramic or fused quartz can handle high power

Stealth Antennas

Saguaro Cactus (Carnegia giantea)?

S.D. Stearns, K6OIK

ARRL Pacificon Antenna Seminar, San Ramon, CA

October 19-21, 2007

October 19-21, 2007

Evergreen Trees?

Deciduous Tree?

Non-Stealth Antennas

90-Foot Drive-Up Discone, Green Valley, Arizona

S.D. Stearns, K6OIK

ARRL Pacificon Antenna Seminar, San Ramon, CA

October 19-21, 2007

Why Little Transmitters Get Heard

K0DK in Boulder, Colorado

ARRL Pacificon Antenna Seminar, San Ramon, CA

October 19-21, 2007

S.D. Stearns, K6OIK

78

K4JA at Callao, Virginia

W5UN at Mount Pleasant, Texas

W6AM's Antennas As Seen from Space

W6AM at Rancho Palos Verdes, California

S.D. Stearns, K6OIK

ARRL Pacificon Antenna Seminar, San Ramon, CA

October 19-21, 2007

81

Broadband Antennas

Vivaldi Antenna (1974)

- Exponentially tapered slot antenna
- Gain: 8 to 9 dBi
- Bandwidth: no limit
- Arbitrary polarizations obtained by feeding two crossed antennas
- Construction: PC board

Bandwidths of one octave to one decade can be achieved

Four-Sector Vivaldi Antenna

- Antenna mounts horizontally
- Polarization: horizontal
- Four directional beams
- Beam selected by PIN diodes
- Gain: 8 to 9 dBi per sector

Dual use! Could be mounted as a horizontal capacity hat on a short HF monopole to span all UHF bands

Or mount two vertically and crossed for vertical polarization in four sectors

Computer Evolved Antennas via Genetic Optimization

- Crooked Wire Genetic Antennas (CWGA)
- Types: 1 and 4 arms
- Frequencies: 2 to 18 GHz
- Pattern: Omni 10° above horizon

Courtesy of JEM Engineering

NASA ST5 Satellite Antenna

- Frequencies:
 - ➤ Tx: 8.470 GHz
 - ➢ Rx: 7.209 GHz
- Polarization: RHCP
- Gain:
 - -5 dBi, 0° to 40°
 - 0 dBi, 40° to 90°
 - > No null at zenith
- SWR:
 - ≻ Tx: 1.19
 - > Rx: 1.22
- Wire: 20 gauge

Courtesy of JEM Engineering

Loaded UWB Antenna for 1 to 15 GHz

SWR < 3 from 1 to 15 GHz

Courtesy of JEM Engineering

ARRL Pacificon Antenna Seminar, San Ramon, CA

Air Force 10-Segment Resonant Antenna (0.03 λ)

Courtesy of JEM Engineering

Inexpensive Curtain Quad Arrays

Courtesy of Ross Anderson, W1HBQ

Ross Anderson W1HBQ's Curtain Quad for WiFi

- Frequency 2.4 GHz IEEE 802.11
- Gain: 17 dBi
- Polarization: V (as shown)
- Material: 3 × 2 inch welded wire fence
- Wire: #16 steel wire, 0.031 in
- Backing: 1 inch foam board, backed with aluminum foil
- Feedpoint Z: 600 Ω
- Match device: ~1 in of 125 Ω speaker wire

W1HBQ's 221-Element Curtain Quad for 1296 MHz

- Gain: 26 dBi
- Polarization: H (as shown)
- Feedpoint Z: 99 Ω

Metamaterial Radomes

Transmitter Inside Cow

Performance of Cow Radome – Longitudinal Plane

Cow Radome – Transverse Plane

- Shell type: ENG
 - Stub length: $\lambda/50$
- Shell radius: $\lambda/18.5$
- > Frequency: 2.025 GHz
- Z: 50 ohms real
- > VSWR: < 1.02
- Bandwidth: 4.76%
- > Q_A : 42 (Q_{Chu} = 28.9)
- Polarization: vertical
- Efficiency: > 61%

Two-Port Equivalent Circuit of Monopole Antenna

Monopole Space-Matched by Thin DNG Shell

K6OIK's Electrically-Small 2-Meter Antenna

Close Up View of the Radiator

Metamaterial Radome for Impedance Matching

S.D. Stearns, K6OIK

ARRL Pacificon Antenna Seminar, San Ramon, CA

October 19-21, 2007

Radome for Impedance Matching on 2 Meters

Analyzing Terrain Effects by Computational Electromagnetics

Meshing Silicon Valley Courtesy of Keith Snyder, KI6BDR

Antenna Modeling Software for Radio Amateurs

EZNEC and EZNEC+ by Roy Lewallen, W7EL

➢ 500 and 1,500 segments respectively, \$89 and \$139

EZNEC-ARRL

Included on ARRL Antenna Book CD, \$45

MultiNEC by Dan Maguire, AC6LA, <u>http://www.ac6la.com</u>

- Low cost but currently unavailable
- Puts EZNEC on autopilot for making a series of many runs
- Doesn't work with EZNEC-ARRL

4nec2 by Arie Voors, <u>http://home.ict.nl/~arivoors</u>

- Free download
- Runs under Windows 2000 and XP
- Handles up to 11,000 segments
- > Optimizer included

Professional evaluation software

- FEKO LITE <u>http://www.feko.info</u>
- WIPL-D Lite <u>http://www.wipl-d.com</u>

Earth Currents and Hills Looking South West

Description	6 Xi NetRAIDer network servers	
Processors	12 AMD Opteron 64-bit	
Memory	96 Gbytes	
Disk storage	12 Tbytes	
Compute speed	> 53 GFLOPs/sec	

Required Computation

Frequency (kHz)	Triangles	Hours	Memory (GB)
1,900	3,928	0.125	0.53
3,750	12,834	1.54	5.48
7,150	38,717	52.1	9.38

Ground Currents

DR. JOHN L. VOLAKIS ANTENNA ENGINEERING HANDBOOK

Amateur Reference

Engineering Reference

Favorite Antenna Books

ELECTRICALLY SMALL, SUPEROINECITIE, MO SUPEROINDUCTING ANTENNAS 6. C. HANKEN

Books for antenna engineers and students

- Antenna Engineering Handbook, 4th ed., J.L. Volakis editor, McGraw-Hill, 2007, ISBN 0071475745. First published in 1961, Henry Jasik editor.
- R.C. Hansen, *Electrically Small, Superdirective, and* Superconducting Antennas, Wiley, 2006, ISBN 0471782556.
- C.A. Balanis, Antenna Theory, 3rd ed., Wiley, 2005, ISBN 047166782X. First published in 1982 by Harper & Row.
- J.D. Kraus and R.J. Marhefka, Antennas, 3rd ed., McGraw-Hill, 2001, ISBN 0072321032. First published in 1950.
- S.J. Orfanidis, *Electromagnetic Waves and Antennas*, draft textbook online at <u>http://www.ece.rutgers.edu/~orfanidi/ewa/</u>
- E.A. Laport, Radio Antenna Engineering, McGraw-Hill, 1952. <u>http://snulbug.mtview.ca.us/books/RadioAntennaEngineering</u>
- Antenna research papers
 - IEEE AP-S Digital Archive, 1952-2000 (2 DVDs), JD0351.
 - IEEE AP-S Digital Archive, 2001-2003 (1 DVD), JD0301.

Favorite Antenna Books continued

Books for radio amateurs

- ARRL Antenna Book, 21st ed., Dean Straw (N6BV) editor, American Radio Relay League, 2007, ISBN 0872599876.
- Practical Wire Antennas 2, Ian Poole (G3YWX) editor, Radio Society of Great Britain, 2005, ISBN 1905086040.
- J. Devoldere (ON4UN), ON4UN's Low-Band Dxing, 4th ed., \geq American Radio Relay League, 2005, ISBN 0872599140.
- J. Sevick (W2FMI), The Short Vertical Antenna and Ground Radial, CQ Communications, 2003, ISBN 0943016223.
- L. Moxon (G6XN), *HF Antennas for All Locations*, 2nd ed., Radio Society of Great Britain, 1983, ISBN 1872309151.

HF ANTENNAS

ARRL Antenna Compendium series – Volumes 1 through 7

October 19-21, 2007

ARRL Pacificon Antenna Seminar, San Ramon, CA

The End

This presentation will be archived at http://www.fars.k6ya.org/docs/k6oik