A Transmission Line Power Paradox and Its Resolution

Steve Stearns, K60IK

Technical Fellow Northrop Grumman Electromagnetic Systems Laboratory San Jose, California <u>stearns@ieee.org</u> <u>k6oik@arrl.net</u>

Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

1

ARRL Pacificon Presentations by K60IK

2

1999	Mustarias of the Smith Chart	Archived at	
1999	Mysteries of the Smith Chart	tp://www.fars.k6ya.org	
2000	Jam-Resistant Repeater Technology: Signal Separation Identification, Routing, Control, and Automatic Logging),	
2001	Mysteries of the Smith Chart	\checkmark	
2002	How-to-Make Better RFI Filters Using Stubs		
2003	Twin-Lead J-Pole Design		
2004	Antenna Impedance Models – Old and New	\checkmark	
2005	Novel and Strange Ideas in Antennas and Impedance Ma	atching	
2006	Novel and Strange Ideas in Antennas and Impedance Ma	atching 2 🖌 🗸	
2007	New Results on Antenna Impedance Models and Matchi	ng 🗸	
2008	Antenna Modeling for Radio Amateurs	\checkmark	
2009	(convention held in Reno)		
2010	Facts About SWR, Reflected Power, and Power Transfer Transmission Lines with Loss	on Real 🖌 🗸	
2011	Conjugate Match Myths	\checkmark	
2012	Transmission Line Filters Beyond Stubs and Traps	\checkmark	
2013	Bode, Chu, Fano, Wheeler: Antenna Q and Match Band	width 🗸	
2014	A Transmission Line Power Paradox and Its Resolution	\checkmark	
Steve St	earns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA C	October 10-12, 2014	

Outline

Antenna books

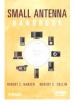
Software

- Antenna modeling
- Circuit design
- Smith chart

Transmission line theory – a brief review

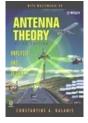
- Distributed parameters
- Complex characteristic impedance and propagation constant
- Attenuation constant and phase constant
- Published formula for line loss with mismatched load

The Loss Paradox


The Resolution

- Power delivery myth
- Improved formulas for line loss with mismatched load

References


3 Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

Favorite Antenna Books

Books for antenna engineers and students

- R.C. Hansen and R.E. Collin, Small Antenna Handbook, Wiley, 2011, ISBN 0470890835
- Modern Antenna Handbook, C.A. Balanis editor, Wiley, 2008, ISBN 0470036346
- Antenna Engineering Handbook, 4th ed., J.L. Volakis editor, McGraw-Hill, 2007, ISBN 0071475745. First published in 1961, Henry Jasik editor
- C.A. Balanis, Antenna Theory, 3rd ed., Wiley, 2005, ISBN 047166782X. First published in 1982 by Harper & Row
- J.D. Kraus and R.J. Marhefka, Antennas, 3rd ed., McGraw-Hill, 2001, ISBN 0072321032. First published in 1950
- S.J. Orfanidis, Electromagnetic Waves and Antennas, draft textbook online at <u>http://www.ece.rutgers.edu/~orfanidi/ewa/</u>
- E.A. Laport, Radio Antenna Engineering, McGraw-Hill, 1952 <u>http://snulbug.mtview.ca.us/books/RadioAntennaEngineering</u>
- G.V. Ayzenberg, Shortwave Antennas, 1962, transl. from Russian, DTIC AD0706545. <u>http://www.dtic.mil/dtic/tr/fulltext/u2/706545.pdf</u>

Antenna research papers

- IEEE AP-S Digital Archive, 2001-2009 (1 DVD), JD0307
- IEEE AP-S Digital Archive, 2001-2006 (1 DVD), JD0304
- IEEE AP-S Digital Archive, 2001-2003 (1 DVD), JD0301
- IEEE AP-S Digital Archive, 1952-2000 (2 DVDs), JD0351

Favorite Antenna Books continued

ANTENNA BOOK

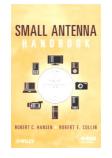
- Rothammel's Antennenbuch, 13th ed., A. Krischke (DJ0TR) editor, DARC Verlag, 2013
- ARRL Antenna Book, 22nd ed., H.W. Silver (N0AX) editor, American Radio Relay League, 2011, ISBN 087259694X
- J. Devoldere (ON4UN), ON4UN's Low-Band Dxing, 5th ed., American Radio Relay League, 2011, ISBN 087259856X
- Practical Wire Antennas 2, I. Poole (G3YWX) editor, Radio Society of Great Britain, 2005, ISBN 1905086040
- J. Sevick (W2FMI), The Short Vertical Antenna and Ground Radial, CQ Communications, 2003, ISBN 0943016223
- L. Moxon (G6XN), HF Antennas for All Locations, 2nd ed., Radio Society of Great Britain, 1983, ISBN 1872309151

ARRL Antenna Compendium series – eight volumes

HF ANTENNAS

Steve Stearns, K6OIK

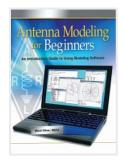
ARRL Antenna Classics series – seven titles



ARRL Pacificon Antenna Seminar, Santa Clara, CA

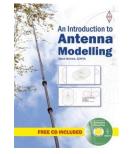

October 10-12, 2014

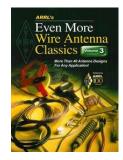
Recent Antenna Books of Interest


R.C. Hansen and R.E. Collin, *Small Antenna Handbook*, Wiley, 2011

Y. Zhang et al., *Higher Order Basis Based Integral Equation Solver* (*HOBBIES*), Wiley, 2012

Elsherbeni et al., *Antenna Analysis and Design using FEKO Electromagnetic Simulation Software*, SciTech, 2014




H.W. Silver, N0AX, Antenna Modeling for Beginners, ARRL, 2012

ARTENDER Dorr Dar Graden

ROTHAMMELS

A. Krischke, DJ0TR, ed., *Rothammels Antennen Buch*, 13th ed, DARC, 2013

S. Nichols G0KYA, *An Introduction to Antenna Modelling*, RSGB, 2014

Even More Wire Antenna Classics vol. 3, ARRL, 2014

Software

7 Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

Antenna Modeling Programs for Radio Amateurs

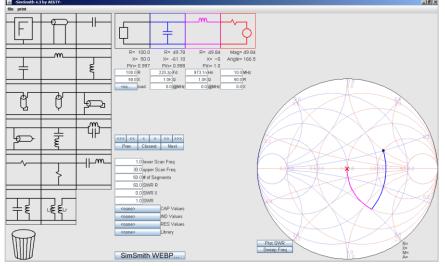
EZNEC <u>http://www.eznec.com</u>

- EZNEC v.5 demo program Free
- EZNEC-ARRL v.3 & v.4 \$50 (on ARRL Antenna Book CD-ROM)
- > EZNEC v.5 \$90
- EZNEC+ v.5 \$140
- EZNEC Pro/2 v.5 \$500
- EZNEC Pro/4 v.5 \$650 (sold only to NEC-4 licensees)
- 4nec2 <u>http://home.ict.nl/~arivoors/</u>
 - Free, 11,000 segments, two optimizers
- MMANA-GAL <u>http://hamsoft.ca/pages/mmana-gal.php</u>
 - Free Basic version 8,192 segs. Pro version 32,000 segs, \$130
- NEC-4 <u>https://ipo.llnl.gov/data/assets/docs/nec.pdf</u>
 - Noncommercial user license \$300
- FEKO Lite <u>http://www.feko.info</u>
 - Free LITE version, no time limit
- WIPL-D Lite <u>http://www.wipl-d.com</u>
 - Free 30-day full demo, or Lite version \$449 (Artech House)
- HOBBIES <u>http://em-hobbies.com</u>
 - Similar to WIPL-D Lite but more capability, \$149 to \$217 online
- 8 Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

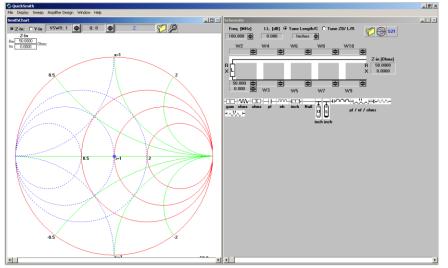
Accessory Software for EZNEC

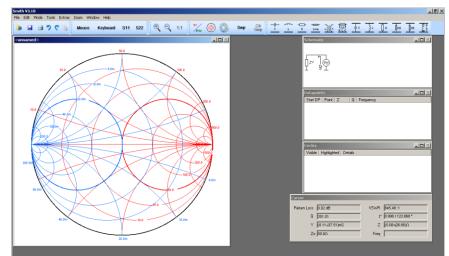
AutoEZ 2.0.8 by Dan Maguire, AC6LA, <u>http://www.ac6la.com</u>

- Visual Basic program \$79, or free demo version (30 segment limit)
- Controls EZNEC to make multiple runs
 - A GUI for a GUI for NEC
- Requires Excel and EZNEC installed on computer
- Has an optimizer Nelder-Mead algorithm
- Can read NEC, AO, and MMANA-GAL files
- Doesn't work with EZNEC-ARRL
- Replaces MultiNEC which is no longer available

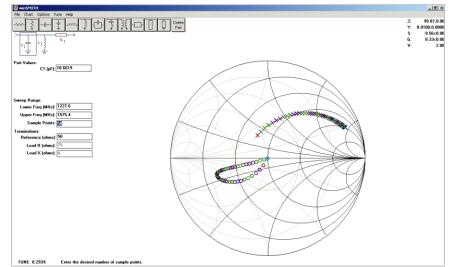

Software for Smith Charting and Network Design

- *SimSmith* 9.9 by Ward Harriman AE6TY
 - Free download from <u>http://ae6ty.com/Smith_Charts.html</u>
- Smith Chart Calculator 2.1 by Gorik Stevens
 - Free download from <u>http://sourceforge.net/projects/gnssmithchart/</u>
- Smith 3.10 by Fritz Dellsperger HB9AJY
 - Free download from <u>http://fritz.dellsperger.net</u>
- QuickSmith 4.5 by Nathan Iyer KJ6FOJ
 - Free download from <u>http://www.nathaniyer.com/qsdw.htm</u>
- JJSmith 2.10 by J. Bromley K7JEB and J. Tonne W4ENE (SK)
 - Free download from <u>http://tonnesoftware.com/jjsmith.html</u>
- IinSmith by James Coppens ON6JC/LW3HAZ
 - Free download from <u>http://jcoppens.com/soft/linsmith/index.en.php</u>
- XLZIZL by Dan Maguire AC6LA, 2005. No longer available.
- WinSMITH 2.0, Noble Publishing, 1995. No longer available.
- *MicroSmith* 2.3, ARRL, 1992. No longer available.


Smith Chart Programs for Ladder Network Design


SimSmith 9.9

Smith 3.10



QuickSmith 4.5

winSMITH 2.0

ARRL Pacificon Antenna Seminar, Santa Clara, CA

General RF Circuit Design, Analysis, and Optimization

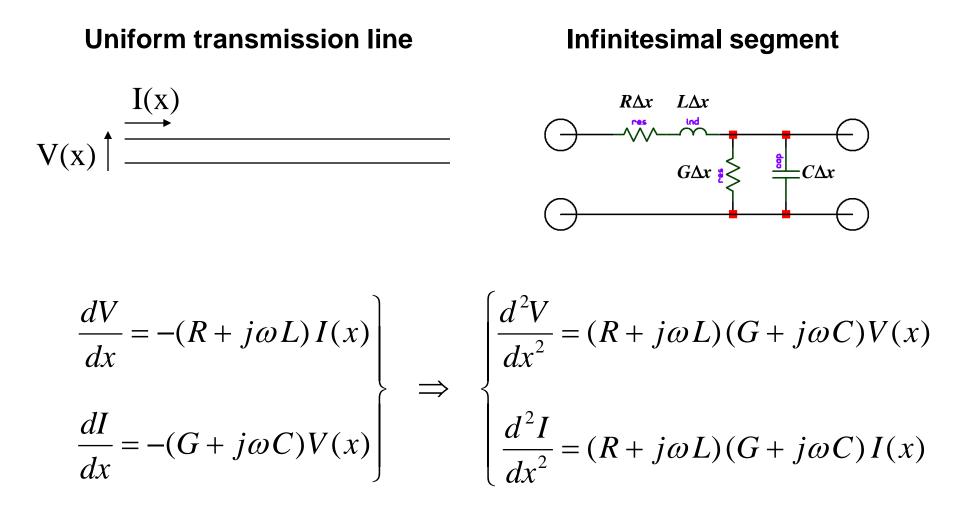
- Quite Universal Circuit Simulator (QUCS) 0.0.18, 2014
 - Free download from http://qucs.sourceforge.net
- Ansoft Serenade SV 8.5 (student version), Ansoft, 2000. No longer available. See article by David Newkirk W9VES in QST Jan. 2001.
- > ARRL Radio Designer 1.5, ARRL, 1995. No longer available.

ADS

- Professional electronic design automation (EDA) software
 - Agilent Advanced Design System (ADS)

Applied Wave Research *Microwave Office* (MWO)

ANSYS Designer


Transmission Line Theory

A Brief Review

Oliver Heaviside, 1850-1925

Heaviside Telegrapher's Equations

Transmission Line Solution: Waves

16

Two waves traveling in opposite directions

$$V(x) = V_0^+ e^{\gamma x} + V_0^- e^{-\gamma x}$$

$$I(x) = \frac{V_0^+}{Z_0} e^{\gamma x} - \frac{V_0^-}{Z_0} e^{-\gamma x}$$
Attenuation per unit length
Propagation constant
$$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} = \alpha + j\beta$$
Characteristic impedance
$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = R_0 + jX_0$$
Phase per unit length

Distortionless Line (Oliver Heaviside, 1887)

 A line is distortionless if R, L, G, and C are constants independent of frequency and

$$\frac{R}{L} = \frac{G}{C}$$
 or $RC = GL$ or $\frac{R}{G} = \frac{L}{C}$

- The first and second equations make clear that dissipationless or lossless line (R = G = 0) is also distortionless
- In most practical lines the insulation is so good that

$$\frac{R}{L} > \frac{G}{C}$$
 or $RC > GL$ or $\frac{R}{G} > \frac{L}{C}$

Oliver Heaviside, "Simple Properties of the Ideally Perfect Telegraph Circuit," Section XLI of the series "Electromagnetic Induction and Its Propagation," *The Electrician*, p. 124, June 16, 1887

Seven Properties of Distortionless Line

Characteristic impedance is purely real

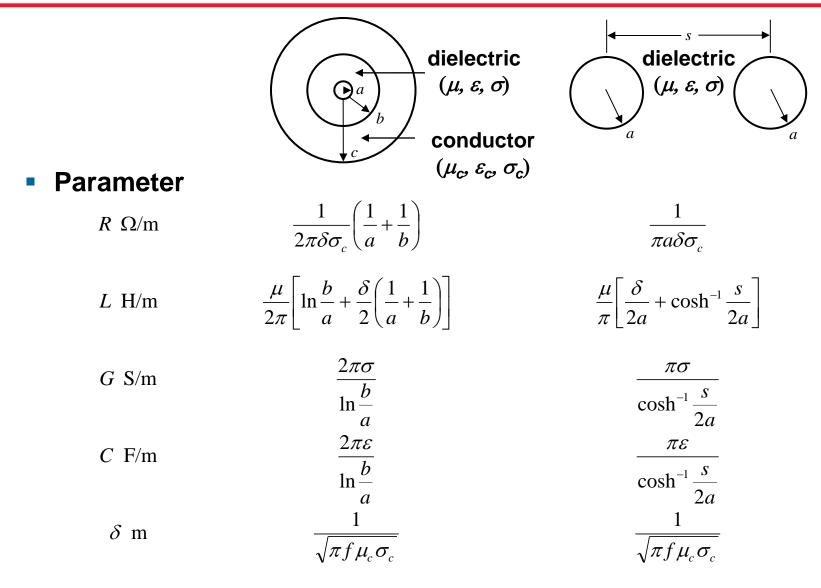
$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \sqrt{\frac{L}{C}} = R_0 + j0$$

- Characteristic impedance is independent of frequency
- Attenuation is independent of frequency
- Attenuation is minimum

$$\frac{\partial \alpha}{\partial L} = \frac{\partial \alpha}{\partial C} = 0$$

- Velocity of propagation is independent of frequency
- Velocity of propagation is maximum

$$\frac{\partial \beta}{\partial R} = \frac{\partial \beta}{\partial L} = \frac{\partial \beta}{\partial G} = \frac{\partial \beta}{\partial C} = 0$$

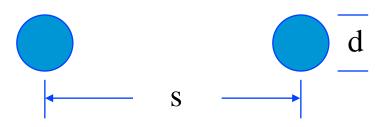

Traveling waves account for power delivery along the line

$$P_{Delivered} = P_{Forward} - P_{Reverse}$$

18 Steve Stearns, K6OIK

ARRL Pacificon Antenna Seminar, Santa Clara, CA

Transmission Line Distributed Parameters from Physical Dimensions and Material Properties



19 Steve Stearns, K6OIK

ARRL Pacificon Antenna Seminar, Santa Clara, CA

October 10-12, 2014

Round Open-Wire Transmission Line (PEC in Air)

- Accurate formula
 - > For high frequencies (assumes that skin depth is small $\delta \ll a$)

$$Z_0 = 119.917 \cosh^{-1}\left(\frac{s}{d}\right)$$

- Approximate formula
 - > Assumes, in addition, large spacings: s/d > 3or large impedances: $Z_0 >$ several hundred

$$Z_0 = 120 \ln\left(\frac{2s}{d}\right) = 276 \log_{10}\left(\frac{2s}{d}\right)$$

Characteristic Impedance

Exact formula

$$Z_0 = R_0 + jX_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \sqrt{\frac{L}{C}} \times \sqrt{\frac{1 + \frac{R}{j\omega L}}{1 + \frac{G}{j\omega C}}}$$

High-frequency, low-loss approximation

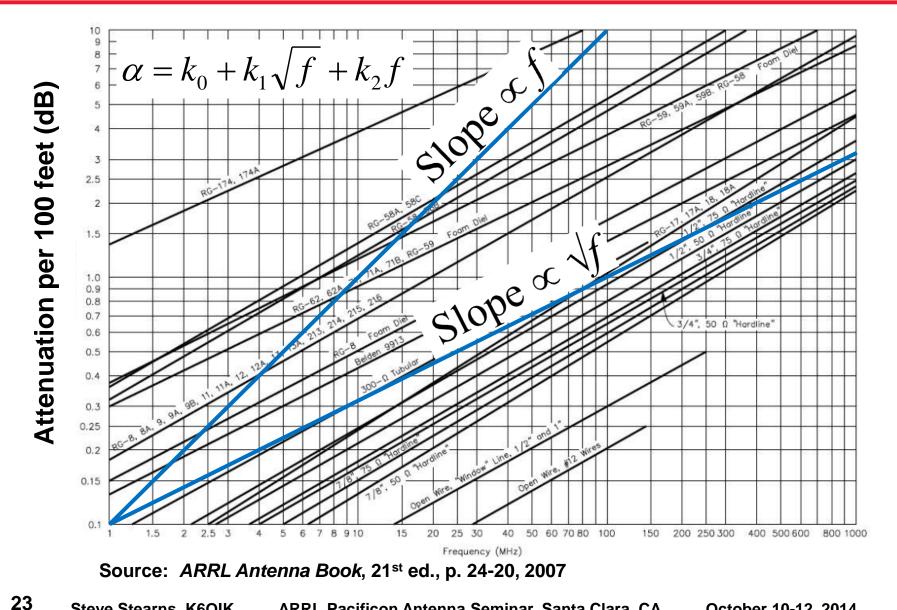
$$Z_{0} \approx \sqrt{\frac{L}{C}} e^{\frac{-j}{2} \left(\frac{R}{\omega L} - \frac{G}{\omega C}\right)}$$
$$|Z_{0}| \approx \sqrt{\frac{L}{C}}$$
$$R_{0} \approx \sqrt{\frac{L}{C}} \cos\left(\frac{R}{2\omega L} - \frac{G}{2\omega C}\right)$$
$$X_{0} \approx -\sqrt{\frac{L}{C}} \sin\left(\frac{R}{2\omega L} - \frac{G}{2\omega C}\right)$$

E.W. Kimbark, Electrical Transmission of Power and Signals, Wiley, 1949

21 Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

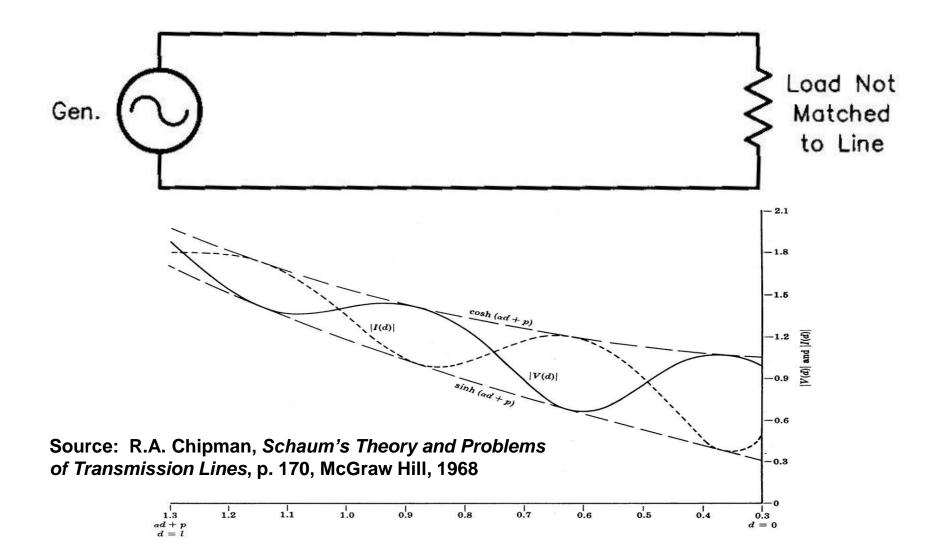
Exact formula

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} = j\omega\sqrt{LC} \times \sqrt{1 + \frac{R}{j\omega L}} \times \sqrt{1 + \frac{G}{j\omega C}}$$

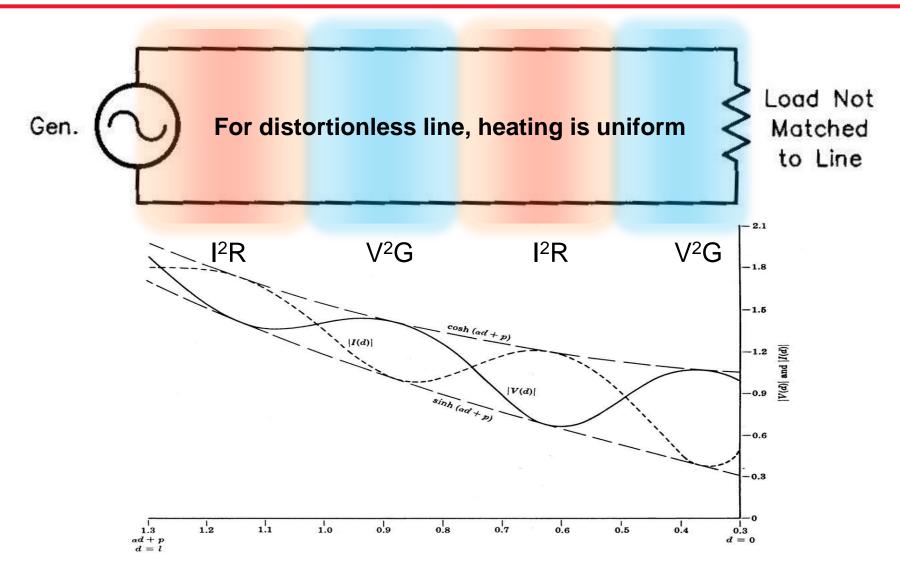

High-frequency, low-loss approximation

$$\begin{split} \gamma &\approx \omega \sqrt{LC} \ e^{j \left[\frac{\pi}{2} - \left(\frac{R}{2\omega L} + \frac{G}{2\omega C}\right)\right]} \\ \alpha &\approx \omega \sqrt{LC} \ \sin \left(\frac{R}{2\omega L} + \frac{G}{2\omega C}\right) \approx \frac{1}{2} \left(\frac{R}{|Z_0|} + G |Z_0|\right) \\ \beta &\approx \omega \sqrt{LC} \\ v_p &= \frac{\omega}{\beta} \approx \frac{1}{\sqrt{LC}} \end{split}$$

E.W. Kimbark, Electrical Transmission of Power and Signals, Wiley, 1949


22 Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

Attenuation Constant of Common Transmission Lines


Steve Stearns, K60IK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

Voltage and Current Standing Waves

24 Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

Ohmic and Dielectric Heating Alternate Along a Mismatched Line

Total Line Loss

SWR does not change with length of the line or along the line. While the values of voltage and current do change along the line, the ratio of their maximum and minimum values does not. The value of SWR shown by typical amateur SWR measuring instruments may change with line length but that can result from a number of causes; inaccuracy of the voltage or current sensing circuits, common-mode current on the outside of a coaxial feed line shield, and signals from a nearby transmitter upsetting the voltage or current measurement being the most common reasons.

Flat Lines

As discussed earlier, all the power that is transferred along a transmission line is absorbed in the load if that load is a resistance value equal to the Z_0 of the line. In this case, the line is said to be *perfectly matched*. None of the power is reflected back toward the source. As a result, no standing waves of current or voltage will be developed along the line. For a line operating in this condition, the waveforms drawn in Figure 23.12A become straight lines, representing the voltage and current delivered by the source. The voltage along the line is constant, so the minimum value is the same as the maximum value. The voltage standing-wave ratio is therefore 1:1. Because a plot of the voltage standing wave is a straight line, the matched line is also said to be *flat*.

23.2.4 ADDITIONAL POWER LOSS DUE TO SWR

The power lost in a given line is least when the line is terminated in a resistance equal to its characteristic impedance, and as stated previously, that is called the *matched-line loss*. There is however an *additional loss* that increases with an increase in the SWR. This is because the effective values of both current and voltage become greater on lines with standing waves. The increase in effective current raises the ohmic losses (I²R) in the conductors, and the increase in effective voltage increases the losses in the dielectric (E²/R).

The increased loss caused by an SWR greater than 1:1 may or may not be serious. If the SWR at the load is not greater than 2:1, the additional loss caused by the standing waves, as compared with the loss when the line is perfectly

The total loss in a line, including matched-line and the additional loss due to standing waves may be calculated from Eq 16 below for moderate levels of SWR (less than 20:1).

Total Loss(dB)=10 log
$$\left(\frac{a^2 - |\rho|^2}{a(1 - |\rho|^2)}\right)$$
 (Eq 16)

where

 $a = 10^{0.1 \text{ ML}} = \text{matched-line loss ratio}$

ML = the matched-line loss in dB for the particular length of line

 $|\rho|$ = the reflection coefficient at the load, calculated as in Eq.7

and reflected power is assumed to be re-reflected at the source.

Thus, the additional loss caused by the standing waves is calculated from:

Additional Loss (dB) = Total Loss – ML (Eq 17)

For example, RG-213 coax at 14.2 MHz is rated at 0.795 dB of matched-line loss per 100 feet. A 150-foot length of RG-213 would have an overall matched-line loss of

 $(0.795/100) \times 150 = 1.193 \text{ dB}$

Thus, if the SWR at the load end of the RG-213 is 4:1,

$$\alpha = 10^{1.193/10} = 1.316$$

$$\left|\rho\right| = \frac{4-1}{4+1} = 0.600$$

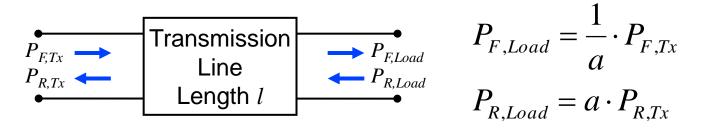
and the total line loss

$$= 10 \log \left(\frac{1.316^2 - 0.600^2}{1.316 (1 - 0.600^2)} \right) = 2.12 \text{ dB}$$

The additional loss due to the SWR of 4:1 is 2.12 - 1.19 = 0.93 dB. Figure 23.14A is a graph of additional loss versus SWR. Figure 23.14B is a nomograph equivalent to Figure 23.14A. Figure 23.14C is an alternative graph that shows the fraction of input power actually delivered to the load for a given source SWR and line Matched Loss (ML).

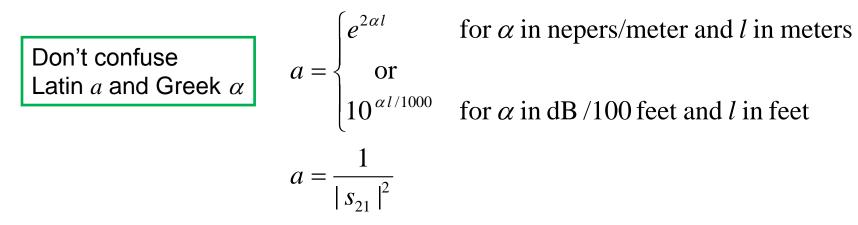
Source: ARRL Antenna Book, 22nd ed., p. 23-11, 2011

Transmission Lines 23-11

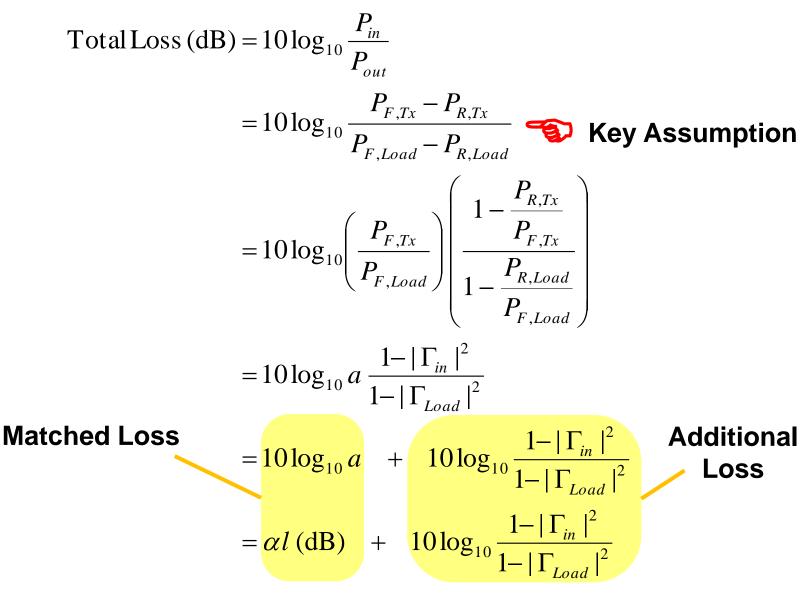

Why SWR < 20:1?

27 Steve Stearns, K6OIK

ARRL Pacificon Antenna Seminar, Santa Clara, CA


Matched Loss and Attenuation Constant

Power at load end in terms of power at transmitter end of line



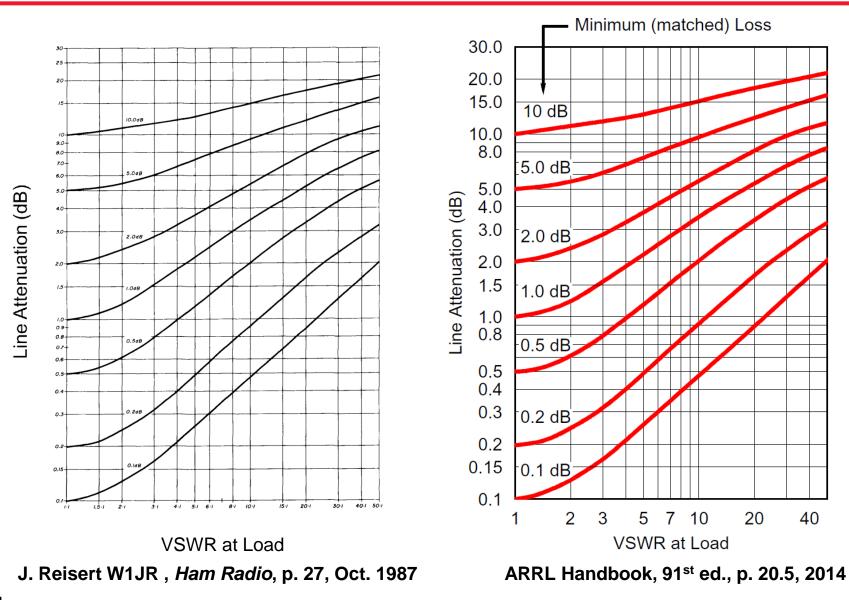
• *a* is the matched loss or power attenuation ratio *in linear units*

- A real number greater than one
- \triangleright Related to the line's attenuation constant α or scattering parameter s_{21}

Derivation of Published Formula for Total Line Loss

29 Steve Stearns, K6OIK

ARRL Pacificon Antenna Seminar, Santa Clara, CA


October 10-12, 2014

Total Line Loss in Terms of SWR at Load

Total Loss (dB) =
$$\alpha l$$
 (dB) + $10\log_{10} \frac{(SWR_{Load} + 1)^2 - \frac{1}{a^2}(SWR_{Load} - 1)^2}{(SWR_{Load} + 1)^2 - (SWR_{Load} - 1)^2}$
Matched Loss Additional Loss

Published line loss formula depends on matched loss and SWR.

Transmission Line Total Loss

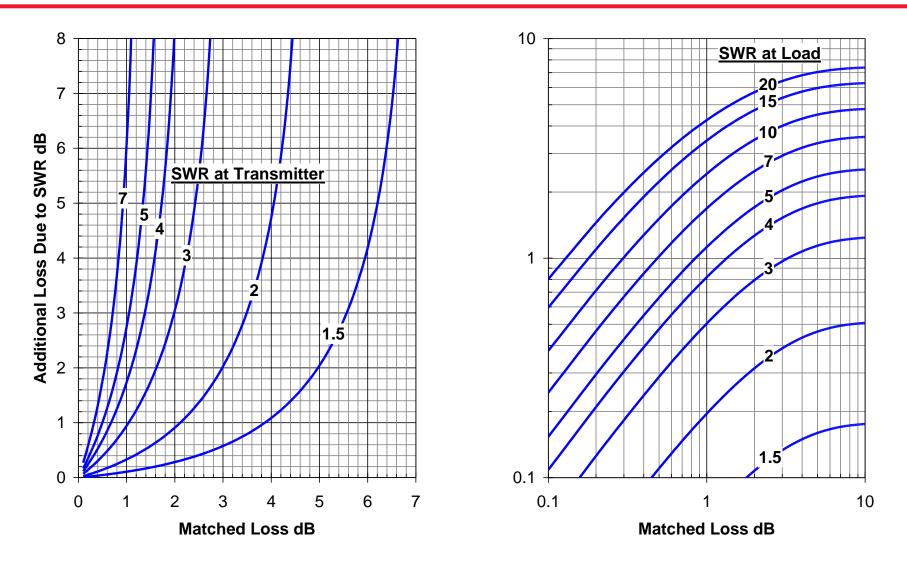
31 Steve Stearns, K6OIK

ARRL Pacificon Antenna Seminar, Santa Clara, CA

October 10-12, 2014

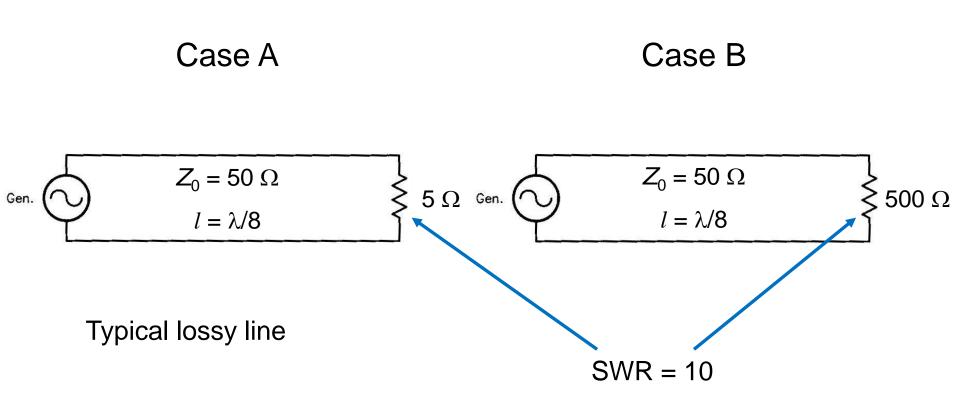
Additional Loss Due to Mismatch

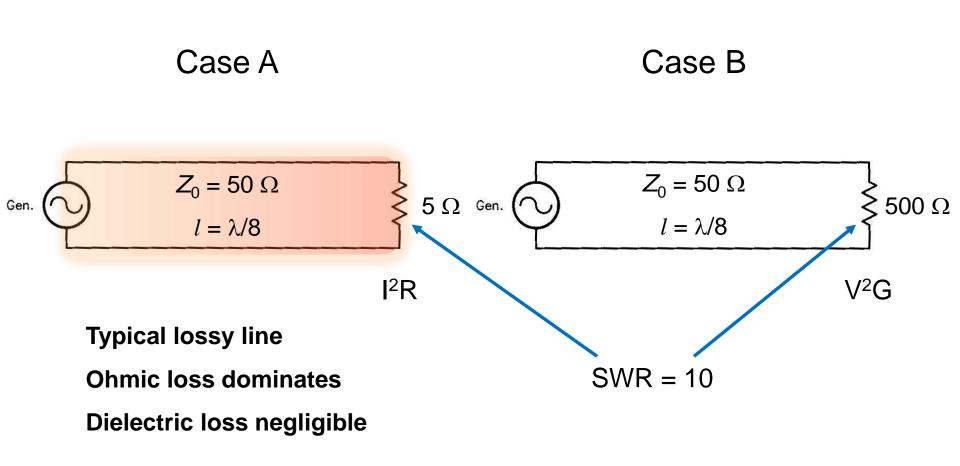
 The additional loss can be expressed in terms of the SWR at the line's input or its output


Input SWR
$$10\log_{10}\frac{1-|\Gamma_{in}|^2}{1-a^2|\Gamma_{in}|^2} = 10\log_{10}\frac{(SWR_{Tx}+1)^2 - (SWR_{Tx}-1)^2}{(SWR_{Tx}+1)^2 - a^2(SWR_{Tx}-1)^2}$$

Additional Loss (dB) =

$$\frac{1 - \frac{1}{a^2} |\Gamma_{Load}|^2}{1 - |\Gamma_{Load}|^2} = 10 \log_{10} \frac{(SWR_{Load} + 1)^2 - \frac{1}{a^2} (SWR_{Load} - 1)^2}{(SWR_{Load} + 1)^2 - (SWR_{Load} - 1)^2}$$


Next slide shows the additional loss graphed both ways


Additional Loss versus Matched Loss

ARRL Pacificon Antenna Seminar, Santa Clara, CA

The Loss Paradox

36 Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

Total Loss (dB) =
$$\alpha l$$
 (dB) + 10log₁₀ $\frac{11^2 - \frac{1}{a^2}9^2}{11^2 - 9^2}$

- Does not depend on R_L except through SWR !
- For a given SWR, does not depend on whether $R_L > Z_0$ or $R_L < Z_0$!
- For a given SWR, does not depend on where Z_L lies on Smith Chart's SWR circle !

Published line loss formula depends on matched loss and SWR.

The Paradox

- Assume a lossy 50-Ω line in which copper loss dominates dielectric loss
- Case A
 - > A short lossy 50- Ω line terminated with a 5- Ω resistor
 - Line current is high at the load
- Case B
 - Same line terminated with a 500- Ω resistor
 - Line current is low at the load
- SWR at load is 10:1 in both cases
- By published formula, line loss is the same in both cases
- By physical reasoning, line loss is greater in Case A than Case B

The Resolution

The Problem

- The total line loss formula depends for its proof on the condition
 - Delivered power is forward power minus reverse power

$$P_{Delivered} = P_{Forward} - P_{Reverse}$$

- While true for distortionless line, this statement is not true for general transmission lines
- Certain kinds of power meters make a similar assumption

Delivered Power Along a General Transmission Line

$$P_{Delivered} = \frac{1}{2} \operatorname{Re} \{ V I^* \} = \frac{1}{4} \left[V I^* + V^* I \right]$$

$$= \frac{1}{4} \left[(V_F + V_R) (I_F^* - I_R^*) + (V_F^* + V_R^*) (I_F - I_R) \right]$$

$$= \frac{1}{4} \left[V_F I_F^* - V_R I_R^* + V_R I_F^* - V_F I_R^* + V_F^* I_F - V_R^* I_R + V_R^* I_F - V_F^* I_R \right]$$

$$= \frac{1}{4} \left[V_F I_F^* + V_F^* I_F \right] - \frac{1}{4} \left[V_R I_R^* + V_R^* I_R \right] + \frac{1}{4} \left[V_R I_F^* - V_F I_R^* + V_R^* I_F - V_F^* I_R \right]$$

$$= P_{Forward} - P_{Reverse} + \frac{1}{4} \left[V_R I_F^* - V_F I_R^* + V_R^* I_F - V_F^* I_R \right]$$

Cross terms !

Cross Power Terms
$$= \frac{1}{4} \left[V_R I_F^* - V_F I_R^* + V_R^* I_F - V_F^* I_R \right]$$
$$= \frac{1}{4} \left[\frac{V_F^* V_R}{Z_0^*} - \frac{V_F V_R^*}{Z_0^*} + \frac{V_F V_R^*}{Z_0} - \frac{V_F^* V_R}{Z_0} \right]$$
$$= \frac{1}{4} \left(V_F V_R^* - V_F^* V_R \right) \left(\frac{1}{Z_0} - \frac{1}{Z_0^*} \right)$$
$$= 0 \quad \text{if } V_F V_R^* \text{ is real or } Z_0 \text{ is real}$$

Cross terms vanish if either of two conditions is met

- > Real Z_0 , e.g. distortionless line
- > Real reflection coefficient, i.e. real V_R/V_F or real Z_L/Z_0

Formulas for Total Loss of Terminated General Transmission Lines

Loss expressed in terms of the load impedance

Total Loss (dB) = 20
$$\log_{10} \left| \cosh \gamma L + \frac{Z_L}{Z_0} \sinh \gamma L \right| + 10 \log_{10} \frac{R_{IN}}{R_L}$$

Loss expressed in terms of line input impedance

Total Loss (dB) = -20
$$\log_{10} \left| \cosh \gamma L - \frac{Z_{IN}}{Z_0} \sinh \gamma L \right| + 10 \log_{10} \frac{R_{IN}}{R_L}$$

where Z₀ is complex characteristic impedance taken as

$$Z_0 = R_0 + jX_0$$
$$\approx R_0 - j\frac{\alpha}{\beta}R_0$$

Other useful forms are obtained from equations on Slides 20 and 21

Test Case for Numerical Validation of Loss Formulas

Input parameters (N6BV example)

- Line type:
 Length:
 - Frequency:
 - Alpha:
 - Velocity factor:
 - \succ R_0 = real part of Z_0 :
 - > Load resistance R_L :
 - \succ Load reactance X_L :

Wireman #551, 450- Ω window line 100 feet 1.83 MHz 0.095 dB/100 feet 0.915 402.75 Ω 4.5 Ω -1,673 Ω

$Z = 4.5 - j 1,673 \Omega$ – What Antenna Is This?

Electrically small dipole – three step calculation

$$R_{Rad} = 5(\beta L)^2 = 20 \left(\frac{\pi f L}{c}\right)^2$$

$$\therefore \quad L = \frac{c}{2\pi f} \sqrt{\frac{R_{Rad}}{5}} = 24.735 \,\mathrm{m} = 81.15 \,\mathrm{ft}$$

 $L/d \approx 30$ $\therefore \quad d = \frac{L}{\frac{1}{1+e^{\frac{-X_{Ant}}{1}}}} = \frac{24.735}{1+29.078} = 0.8224 \text{ m} = 32.38 \text{ in}$

Efficiency if a single wire/tube, not a cage

$$R_{Loss} = \frac{2}{3} \sqrt{\frac{\pi \mu_0 f}{\sigma}} \frac{1}{\pi d} = \frac{4 \times 10^{-7}}{3\sqrt{5.8}} \frac{\sqrt{f}}{d} = 91 \,\mu\Omega$$

$$\therefore \quad \text{Efficiency (\%)} = \frac{100R_{Rad}}{R_{Rad} + R_{Loss}} = \frac{4.5}{4.500091} = 99.998 \,\%$$

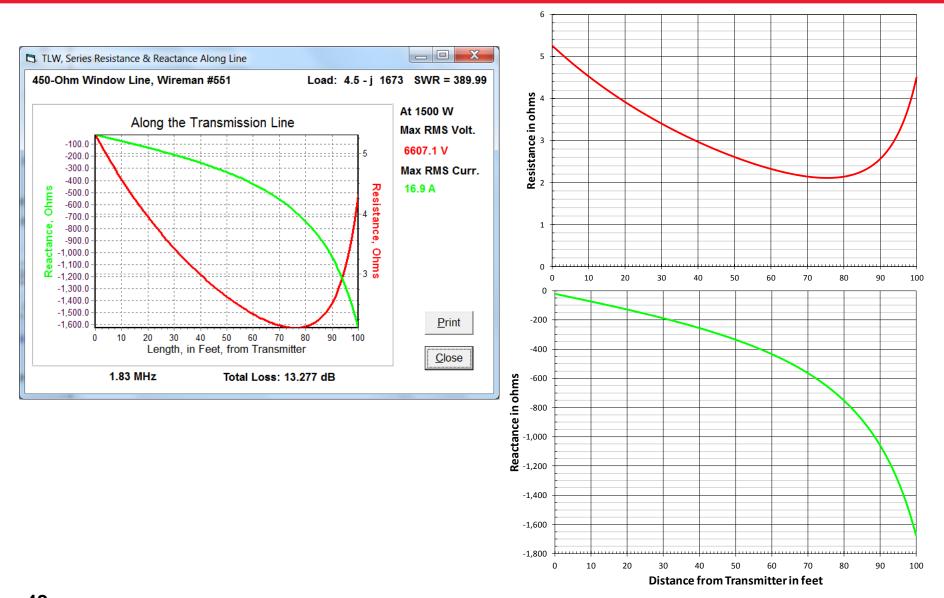
 $I \approx \lambda / 6.6$

45 Steve Stearns, K6OIK ARRL Pacificon Antenna Seminar, Santa Clara, CA October 10-12, 2014

Calculated Values from TLW v3.24

TLW	-	-	-					
TLW, Transmission Line Program for Windows								
Version 3.24, Copyright 2000-2014, ARRL, by N6BV, Jan. 31, 2014 Cable Type: 450-Ohm Window Line, Wireman #551								
 Feet Meters Length: 100 Feet 0.203 Lambda Frequency: 1.83 MHz Use "w" suffix for wavelength (for example, 0.25w) 								
Characteristic Z0: 402.7 - j 3.46 Ohms Matched-Line Loss: 0.095 dB/100 Feet Velocity Factor: 0.915 Max Voltage: 10000 V Total Matched-Line Loss: 0.095 dB								
Source Normal Autek	C Load	Resistance:	Ohms	 Volt./Current Resist./Reac. 	<u>G</u> raph			
O Noise Bridge		Reactance:1673		<u>T</u> uner <u>P</u> rint	E <u>x</u> it			
SWR at Line Input: 74.07 SWR at Load: 389.99 Rho at Load: 0.99488								
Additional Loss Due to SWR: 13.182 dB Total Line Loss: 13.277 dB								
Impedance at Input: 5.26 - j 23.00 Ohms = 23.60 Ohms at -77.13 Degrees								

Validation Results

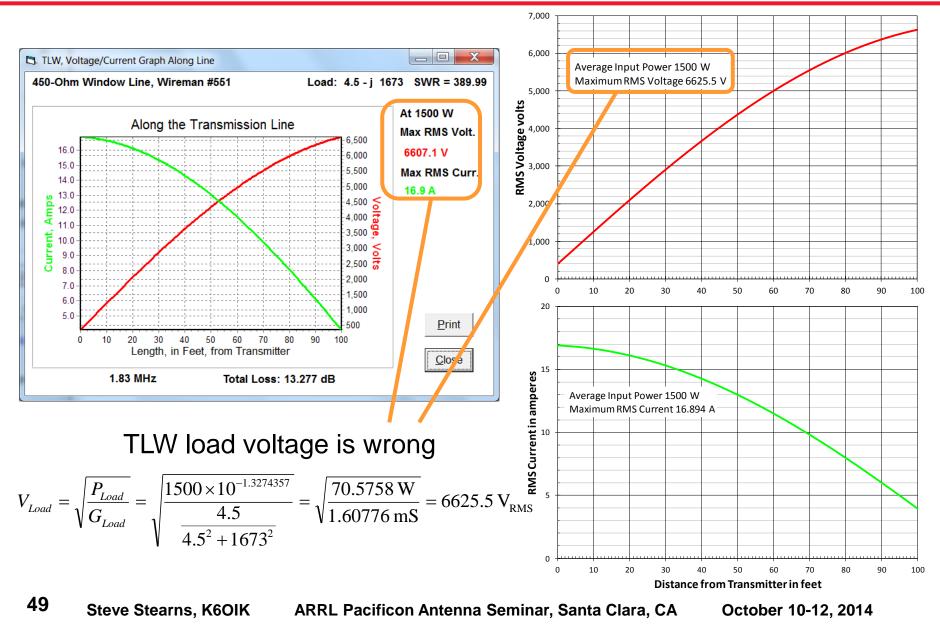

	Published Formula	TLW	New Formula 1	New Formula 2
$R_0 = (given)$	402.75	402.7	402.75	402.75
<i>X</i> ₀ =	-3.446913256	-3.46	-3.446913256	-3.446913256
$R_L = (given)$	4.5	4.5	4.5	4.5
$X_L = (given)$	1773	1773	1773	1773
Γ at load	0.994894069	0.99488	0.994894069	0.994894069
SWR at load =	390.7013472	389.99	390.7013472	390.7013472
R _{in} =	5.255606806	5.26	5.255606806	5.255606806
X _{in} =	-22.99763828	-23.00	-22.99763828	-22.99763828
Z _{in} =	23.59052287	23.60	23.59052287	23.59052287
Angle(Z _{in}) =	-77.12735721	-77.13	-77.12735721	-77.12735721
SWR at input =	74.11147916	74.07	74.11147916	74.11147916
Total Loss (dB) =	7.220380739	13.277	13.27435696	13.27435696
Additional Loss Due to Mismatch (dB) =	7.125380739	13.182	13.17935696	13.17935696

47 Steve Stearns, K6OIK

ARRL Pacificon Antenna Seminar, Santa Clara, CA

October 10-12, 2014

Resistance and Reactance Along the Transmission Line



48 Steve Stearns, K6OIK

ARRL Pacificon Antenna Seminar, Santa Clara, CA

October 10-12, 2014

Voltage and Current Along Transmission Line

ARRL Pacificon Antenna Seminar, Santa Clara, CA

October 10-12, 2014

Summary of Test Example

- The published formula underestimates line loss by 6.05 dB
- Assuming 1500 watts input to line
- Published formula predicts incorrectly
 - Total line loss = 7.22 dB
 - > Power delivered to load = 284.5 W
 - Power dissipated in line = 1215.5 W
- New formulas and TLW predict correctly
 - Total line loss = 13.27 dB
 - Power delivered to load = 70.6 W
 - Power dissipated in line = 1429.4 W

Ignoring the seemingly small imaginary part of Z_0 of practical transmission lines can give large error in predicted delivered power.

Summary and Conclusion

 Showed the published formula for total line loss has a fundamental problem – stemming from a hidden assumption

$$P_{Delivered} = P_{Forward} - P_{Reverse}$$

- Showed the published formula and graphs for mismatched line loss are correct only in two special cases
 - > Real Z_0 , e.g. distortionless line
 - > Real reflection coefficient, i.e. real V_R/V_F or real Z_L/Z_0
- "SWR < 20" is not the correct condition to assure accuracy</p>
- Gave improved formulas for the total loss of general lines
- Showed the new formulas agree with *Transmission Lines for Windows* (TLW)

Ignoring the seemingly small imaginary part of Z_0 of practical transmission lines can give large error in predicted delivered power.

References – Papers and Books

- Papers
 - T.M. Papazoglou, "Review of the Maximum Efficiency of Transmission Lines," IEEE Trans. Education, Nov. 1992
- $\star \star \star \star \bigcirc$ G.E. Stannard, Calculation of Power on a Transmission Line, *Proc. IEEE*, Jan. 1967
 - K. Kurokawa, "Power Waves and the Scattering Matrix," IEEE Trans. Microwave Theory and Techniques, Mar. 1965
 - W.W. Macalpine, "Computation of Impedance and Efficiency of Transmission Line with High Standing-Wave Ratio," *Trans. AIEE*, July 1953
 - S.G. Lutz, "Transmission Line Load Impedance for Maximum Efficiency," Trans. AIEE, July 1951
 - W.W. Macalpine, "Heating of Radio-Frequency Cables," *Trans. AIEE*, July 1949
 - Books
 - M.E. Van Valkenburg and W.M. Middleton, eds., *Reference Data for Engineers*, 9th ed., Newnes/Butterworth-Heineman, 2002
- - R.W.P. King, *Transmission Line Theory*, McGraw-Hill, 1955. Republished by Dover 1965
- ★★★ 🎓 🕨 H.H. Skilling, *Electric Transmission Lines*, McGraw-Hill, 1951
 - W.C. Johnson, *Transmission Lines and Networks*, McGraw-Hill, 1950

References – Books continued

- > J.J. Karakash, *Transmission Lines and Filter Networks*, Macmillan, 1950
- \star \star \star \sim E.W. Kimbark, Electrical Transmission of Power and Signals, Wiley, 1949
 - J.D. Ryder, *Networks, Lines, and Fields*, Prentice-Hall, 1949
 - S. Ramo and J.R. Whinnery, *Fields and Waves in Modern Radio*, Wiley, 1949
 - → W. Jackson, *High Frequency Transmission Lines*, Methuen, 1945.
 - R.I. Sarbacher and W.A. Edson, Hyper and Ultrahigh Frequency Engineering, Wiley, 1943, Chapter 9.
 - F.E. Terman, *Radio Engineering*, McGraw-Hill, 1937
 - E.A. Guillemin, Communication Networks, Vol. II: The Classical Theory of Long Lines, Filters and Related Networks, Wiley, 1935
 - W.L. Everitt, *Communication Engineering*, McGraw-Hill, 1932
 - A.E. Kennelly, The Application of Hyperbolic Functions to Electrical Engineering Problems, McGraw-Hill and Univ. London Press, 1916; Tables of Complex Hyperbolic and Circular Functions, Harvard Univ. Press, 1914; Chart Atlas of Complex Hyperbolic and Circular Functions, Harvard Univ. Press, 1914
 - C.P. Steinmetz, Elementary Lectures on Electric Discharges, Waves and Impulses, and Other Transients, McGraw-Hill, 1914
 - H.B. Dwight, Transmission Line Formulas for Electrical Engineers and Engineering Students, Constable, 1913
 - J.A. Fleming, The Propagation of Electrical Currents in Telephone and Telegraph Conductors, Constable, 1911
 - > O. Heaviside, *Electromagnetic Theory*, London, 1893-1912
 - > O. Heaviside, *Electrical Papers*, London, 1872-1892

The End

This presentation will be archived at http://www.fars.k6ya.org/docs/k6oik